Yu, Gang.
Human Action Analysis with Randomized Trees [electronic resource] / by Gang Yu, Junsong Yuan, Zicheng Liu. - VIII, 83 p. 30 illus. in color. online resource. - SpringerBriefs in Electrical and Computer Engineering, 2191-8112 . - SpringerBriefs in Electrical and Computer Engineering, .
Introduction to Human Action Analysis -- Supervised Trees for Human Action Recognition and Detection -- Unsupervised Trees for Human Action Search -- Propagative Hough Voting to Leverage Contextual Information -- Human Action Prediction with Multi-class Balanced Random Forest -- Conclusion.
This book will provide a comprehensive overview on human action analysis with randomized trees. It will cover both the supervised random trees and the unsupervised random trees. When there are sufficient amount of labeled data available, supervised random trees provides a fast method for space-time interest point matching. When labeled data is minimal as in the case of example-based action search, unsupervised random trees is used to leverage the unlabelled data. We describe how the randomized trees can be used for action classification, action detection, action search, and action prediction. We will also describe techniques for space-time action localization including branch-and-bound sub-volume search and propagative Hough voting.
9789812871671
10.1007/978-981-287-167-1 doi
Engineering.
Image processing.
Probabilities.
Engineering.
Signal, Image and Speech Processing.
Image Processing and Computer Vision.
Probability Theory and Stochastic Processes.
TK5102.9 TA1637-1638 TK7882.S65
621.382
Human Action Analysis with Randomized Trees [electronic resource] / by Gang Yu, Junsong Yuan, Zicheng Liu. - VIII, 83 p. 30 illus. in color. online resource. - SpringerBriefs in Electrical and Computer Engineering, 2191-8112 . - SpringerBriefs in Electrical and Computer Engineering, .
Introduction to Human Action Analysis -- Supervised Trees for Human Action Recognition and Detection -- Unsupervised Trees for Human Action Search -- Propagative Hough Voting to Leverage Contextual Information -- Human Action Prediction with Multi-class Balanced Random Forest -- Conclusion.
This book will provide a comprehensive overview on human action analysis with randomized trees. It will cover both the supervised random trees and the unsupervised random trees. When there are sufficient amount of labeled data available, supervised random trees provides a fast method for space-time interest point matching. When labeled data is minimal as in the case of example-based action search, unsupervised random trees is used to leverage the unlabelled data. We describe how the randomized trees can be used for action classification, action detection, action search, and action prediction. We will also describe techniques for space-time action localization including branch-and-bound sub-volume search and propagative Hough voting.
9789812871671
10.1007/978-981-287-167-1 doi
Engineering.
Image processing.
Probabilities.
Engineering.
Signal, Image and Speech Processing.
Image Processing and Computer Vision.
Probability Theory and Stochastic Processes.
TK5102.9 TA1637-1638 TK7882.S65
621.382