Noncommutative geometry and optimal transport : Workshop on Noncommutative Geometry and Optimal Transport, November 27, 2014, University of Besan�con, Besan�con, France / [electronic resource] Pierre Martinetti, Jean-Christophe Wallet, editors. - 1 online resource (pages cm.) - Contemporary mathematics, v. 676 0271-4132 (print); 1098-3627 (online); .

Includes bibliographical references.

From Monge to Higgs: a survey of distance computations in noncommutative geometry / Quantum Metric Spaces and the Gromov-Hausdorff Propinquity / Lectures on the classical moment problem and its noncommutative generalization / Metrics and causality on Moyal planes / Pythagoras Theorem in noncommutative geometry / An Overview of Groupoid Crossed Products in Dynamical Systems / Pierre Martinetti -- Fr�ed�eric Latr�emoli�ere -- Michel Dubois-Violette -- Nicolas Franco and Jean-Christophe Wallet -- Francesco D'Andrea -- Mijail Guillemard -- http://www.ams.org/conm/676/ https://doi.org/10.1090/conm/676/13607 http://www.ams.org/conm/676/ https://doi.org/10.1090/conm/676/13608 http://www.ams.org/conm/676/ https://doi.org/10.1090/conm/676/13609 http://www.ams.org/conm/676/ https://doi.org/10.1090/conm/676/13610 http://www.ams.org/conm/676/ https://doi.org/10.1090/conm/676/13611 http://www.ams.org/conm/676/ https://doi.org/10.1090/conm/676/13612

Access is restricted to licensed institutions


Electronic reproduction.
Providence, Rhode Island :
American Mathematical Society.
2016


Mode of access : World Wide Web

9781470435608 (online)


Noncommutative differential geometry--Congresses.
Mathematical optimization--Congresses.
General -- Conference proceedings and collections of papers -- Proceedings of conferences of miscellaneous specific interest.
Functional analysis -- Selfadjoint operator algebras ($C^*$-algebras, von Neumann ($W^*$-) algebras, etc.) -- Noncommutative differential geometry.
Global analysis, analysis on manifolds -- Infinite-dimensional manifolds -- Noncommutative geometry (�a la Connes).
Differential geometry -- Global differential geometry -- Sub-Riemannian geometry.
Functional analysis -- Selfadjoint operator algebras ($C^*$-algebras, von Neumann ($W^*$-) algebras, etc.) -- Applications of selfadjoint operator algebras to physics.

QC20.7.G44 / W67 2014

516.3/6