Nanogap electrodes /
edited by Tao Li.
- Weinheim, Germany : Wiley-VCH, 2021.
- 1 online resource (435 p.)
Description based upon print version of record. 4.2.5 Mapping the Charge Transport Pathway in Protein Junction by IETS.
Includes bibliographical references and index.
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Nanogap Electrodes and Molecular Electronic Devices -- 1.1 Introduction -- 1.2 Overview of Molecular Electronics -- 1.2.1 Why Molecular Electronics -- 1.2.1.1 History of Computing -- 1.2.1.2 Moore's Law -- 1.2.1.3 Molecular Electronics: A Beyond-CMOS Option -- 1.2.2 Molecular Materials for Organic Electronics -- 1.2.2.1 OLEDs -- 1.2.2.2 OFETs -- 1.2.2.3 OPVs -- 1.2.3 Molecules for Molecular-Scale Electronics -- 1.3 Introduction to Nanogap Electrodes -- 1.4 Summary and Outlook -- References Chapter 2 Electron Transport in Single Molecular Devices -- 2.1 Introduction -- 2.2 General Methods -- 2.2.1 Transport Mechanisms -- 2.2.2 Nonequilibrium Green's Function Method -- 2.2.3 Master Equation Method -- 2.3 Single Electron Transport Through Single Molecular Junction -- 2.3.1 Coherent Transport -- 2.3.2 Hopping Transport -- 2.4 Effect of Many-Body Interactions -- 2.4.1 Electron-Vibration Interaction -- 2.4.1.1 Weak Coupling Regime -- 2.4.1.2 Strong-Coupling Regime -- 2.4.2 Electron-Electron Interaction -- 2.4.2.1 Coulomb Blockade -- 2.4.2.2 Kondo Effect -- 2.5 Thermoelectric Transport 2.6 First-Principles Simulations of Transport in Molecular Devices -- 2.7 Conclusions -- References -- Chapter 3 Fabricating Methods and Materials for Nanogap Electrodes -- 3.1 Introduction -- 3.2 Mechanical Controllable Break Junctions -- 3.3 Electrochemical and Chemical Deposition Method -- 3.3.1 Electroplating and Feedback System -- 3.3.2 Chemical Deposition -- 3.4 Oblique Angle Shadow Evaporation -- 3.5 Electromigration and Electrical Breakdown Method -- 3.5.1 Device Fabrication -- 3.5.2 Gap Size Control -- 3.5.3 Electromigration Applications -- 3.6 Molecular Scale Template 3.6.1 Molecular Rulers -- 3.6.2 Inorganic Films as Templates -- 3.6.3 On-Wire Lithography -- 3.6.4 Nanowire Mask -- 3.7 Focused Ion Beam -- 3.8 Scanning Probe Lithography and Conducting Probe-Atomic Force Microscopy -- 3.8.1 Destructive Way -- 3.8.2 Constructive Way -- 3.8.3 Conducting Probe-Atomic Force Microscopy -- 3.9 Nanogap Electrodes Prepared with Nonmetallic Materials -- 3.9.1 Introduction -- 3.9.2 Nanogap Electrodes Made from Carbon Materials -- 3.9.2.1 Advantages of Carbon Materials -- 3.9.2.2 Carbon Nanotubes for Nanogap Electrodes -- 3.9.2.3 Graphene 3.9.2.4 Silicon Nanogap Electrodes -- 3.9.2.5 Other Materials -- 3.10 Summary and Outlook -- References -- Chapter 4 Characterization Methods and Analytical Techniques for Nanogap Junction -- 4.1 Current-Voltage Analysis -- 4.1.1 Coherent Tunneling Transport -- 4.1.2 Transition Voltage Spectroscopy -- 4.1.3 Incoherent Transport -- 4.2 Inelastic Tunneling Spectroscopy (IETS) -- 4.2.1 Principle and Measurement of IETS -- 4.2.2 Selection Rule and Charge Transport Pathway -- 4.2.3 Line Shape of the IETS -- 4.2.4 Application of the IETS
9783527659562 3527659560 9783527659593 3527659595 9783527659586 3527659587
10.1002/9783527659562 doi
Electrodes.
Nanoelectronics.
Electrodes.
Nanoelectronics.
Electronic books.
TK7874.84
621.3815
Description based upon print version of record. 4.2.5 Mapping the Charge Transport Pathway in Protein Junction by IETS.
Includes bibliographical references and index.
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Nanogap Electrodes and Molecular Electronic Devices -- 1.1 Introduction -- 1.2 Overview of Molecular Electronics -- 1.2.1 Why Molecular Electronics -- 1.2.1.1 History of Computing -- 1.2.1.2 Moore's Law -- 1.2.1.3 Molecular Electronics: A Beyond-CMOS Option -- 1.2.2 Molecular Materials for Organic Electronics -- 1.2.2.1 OLEDs -- 1.2.2.2 OFETs -- 1.2.2.3 OPVs -- 1.2.3 Molecules for Molecular-Scale Electronics -- 1.3 Introduction to Nanogap Electrodes -- 1.4 Summary and Outlook -- References Chapter 2 Electron Transport in Single Molecular Devices -- 2.1 Introduction -- 2.2 General Methods -- 2.2.1 Transport Mechanisms -- 2.2.2 Nonequilibrium Green's Function Method -- 2.2.3 Master Equation Method -- 2.3 Single Electron Transport Through Single Molecular Junction -- 2.3.1 Coherent Transport -- 2.3.2 Hopping Transport -- 2.4 Effect of Many-Body Interactions -- 2.4.1 Electron-Vibration Interaction -- 2.4.1.1 Weak Coupling Regime -- 2.4.1.2 Strong-Coupling Regime -- 2.4.2 Electron-Electron Interaction -- 2.4.2.1 Coulomb Blockade -- 2.4.2.2 Kondo Effect -- 2.5 Thermoelectric Transport 2.6 First-Principles Simulations of Transport in Molecular Devices -- 2.7 Conclusions -- References -- Chapter 3 Fabricating Methods and Materials for Nanogap Electrodes -- 3.1 Introduction -- 3.2 Mechanical Controllable Break Junctions -- 3.3 Electrochemical and Chemical Deposition Method -- 3.3.1 Electroplating and Feedback System -- 3.3.2 Chemical Deposition -- 3.4 Oblique Angle Shadow Evaporation -- 3.5 Electromigration and Electrical Breakdown Method -- 3.5.1 Device Fabrication -- 3.5.2 Gap Size Control -- 3.5.3 Electromigration Applications -- 3.6 Molecular Scale Template 3.6.1 Molecular Rulers -- 3.6.2 Inorganic Films as Templates -- 3.6.3 On-Wire Lithography -- 3.6.4 Nanowire Mask -- 3.7 Focused Ion Beam -- 3.8 Scanning Probe Lithography and Conducting Probe-Atomic Force Microscopy -- 3.8.1 Destructive Way -- 3.8.2 Constructive Way -- 3.8.3 Conducting Probe-Atomic Force Microscopy -- 3.9 Nanogap Electrodes Prepared with Nonmetallic Materials -- 3.9.1 Introduction -- 3.9.2 Nanogap Electrodes Made from Carbon Materials -- 3.9.2.1 Advantages of Carbon Materials -- 3.9.2.2 Carbon Nanotubes for Nanogap Electrodes -- 3.9.2.3 Graphene 3.9.2.4 Silicon Nanogap Electrodes -- 3.9.2.5 Other Materials -- 3.10 Summary and Outlook -- References -- Chapter 4 Characterization Methods and Analytical Techniques for Nanogap Junction -- 4.1 Current-Voltage Analysis -- 4.1.1 Coherent Tunneling Transport -- 4.1.2 Transition Voltage Spectroscopy -- 4.1.3 Incoherent Transport -- 4.2 Inelastic Tunneling Spectroscopy (IETS) -- 4.2.1 Principle and Measurement of IETS -- 4.2.2 Selection Rule and Charge Transport Pathway -- 4.2.3 Line Shape of the IETS -- 4.2.4 Application of the IETS
9783527659562 3527659560 9783527659593 3527659595 9783527659586 3527659587
10.1002/9783527659562 doi
Electrodes.
Nanoelectronics.
Electrodes.
Nanoelectronics.
Electronic books.
TK7874.84
621.3815