Farhangi, Hassan,
Microgrid planning and design : a concise guide / Hassan Farhangi, Geza Joos. - 1 PDF (256 pages).
About the Authors xiii -- Disclaimer xv -- List of Figures xvii -- List of Tables xxiii -- Foreword xxv -- Preface xxvii -- Acknowledgments xxix -- Acronyms and Abbreviations xxxi -- 1 Introduction 1 -- 1.1 Why Microgrid Research Requires a Network Approach 5 -- 1.2 NSERC Smart MicroGrid Network (NSMG-Net) - The Canadian Experience 7 -- 1.3 Research Platform 8 -- 1.4 Research Program and Scope 9 -- 1.5 Research Themes in Smart Microgrids 10 -- 1.5.1 Theme 1: Operation, Control, and Protection of Smart Microgrids 10 -- 1.5.1.1 Topic 1.1: Control, Operation, and Renewables for Remote Smart Microgrids 12 -- 1.5.1.2 Topic 1.2: Distributed Control, Hybrid Control, and Power Management for Smart Microgrids 12 -- 1.5.1.3 Topic 1.3: Status Monitoring, Disturbance Detection, Diagnostics, and Protection for Smart Microgrids 13 -- 1.5.1.4 Topic 1.4: Operational Strategies and Storage Technologies to Address Barriers for Very High Penetration of DG Units in Smart Microgrids 13 -- 1.5.2 Theme 2 Overview: Smart Microgrid Planning, Optimization, and Regulatory Issues 14 -- 1.5.2.1 Topic 2.1: Cost-Benefits Framework - Secondary Benefits and Ancillary Services 16 -- 1.5.2.2 Topic 2.2: Energy and Supply Security Considerations 16 -- 1.5.2.3 Topic 2.3: Demand Response Technologies and Strategies - Energy Management and Metering 16 -- 1.5.2.4 Topic 2.4: Integration Design Guidelines and Performance Metrics - Study Cases 17 -- 1.5.3 Theme 3: Smart Microgrid Communication and Information Technologies 18 -- 1.5.3.1 Topic 3.1: Universal Communication Infrastructure 20 -- 1.5.3.2 Topic 3.2: Grid Integration Requirements, Standards, Codes, and Regulatory Considerations 20 -- 1.5.3.3 Topic 3.3: Distribution Automation Communications: Sensors, Condition Monitoring, and Fault Detection 20 -- 1.5.3.4 Topic 3.4: Integrated Data Management and Portals 21 -- 1.6 Microgrid Design Process and Guidelines 21 -- 1.7 Microgrid Design Objectives 23 -- 1.8 Book Organization 23 -- 2 Microgrid Benchmarks 25. 2.1 Campus Microgrid 25 -- 2.1.1 Campus Microgrid Description 25 -- 2.1.2 Campus Microgrid Subsystems 27 -- 2.1.2.1 Components and Subsystems 27 -- 2.1.2.2 Automation and Instrumentation 28 -- 2.2 Utility Microgrid 30 -- 2.2.1 Description 30 -- 2.2.2 Utility Microgrid Subsystems 32 -- 2.3 CIGRE Microgrid 33 -- 2.3.1 CIGRE Microgrid Description 33 -- 2.3.2 CIGRE Microgrid Subsystems 35 -- 2.3.2.1 Load 35 -- 2.3.2.2 Flexibility 35 -- 2.4 Benchmarks Selection Justification 36 -- 3 Microgrid Elements and Modeling 37 -- 3.1 Load Model 37 -- 3.1.1 Current Source Based 37 -- 3.1.2 Grid-Tie Inverter Based 38 -- 3.2 Power Electronic Converter Models 39 -- 3.3 PV Model 41 -- 3.4 Wind Turbine Model 43 -- 3.5 Multi-DER Microgrids Modeling 44 -- 3.6 Energy Storage System Model 47 -- 3.7 Electronically Coupled DER (EC-DER) Model 49 -- 3.8 Synchronous Generator Model 50 -- 3.9 Low Voltage Networks Model 50 -- 3.10 Distributed Slack Model 51 -- 3.11 VVO/CVR Modeling 53 -- 4 Analysis and Studies Using Recommended Models 57 -- 4.1 Energy Management Studies 57 -- 4.2 Voltage Control Studies 57 -- 4.3 Frequency Control Studies 58 -- 4.4 Transient Stability Studies 58 -- 4.5 Protection Coordination and Selectivity Studies 59 -- 4.6 Economic Feasibility Studies 59 -- 4.6.1 Benefits Identification 59 -- 4.6.2 Reduced Energy Cost 59 -- 4.6.3 Reliability Improvement 60 -- 4.6.4 Investment Deferral 61 -- 4.6.5 Power Fluctuation 61 -- 4.6.6 Improved Efficiency 61 -- 4.6.7 Reduced Emission 62 -- 4.7 Vehicle-to-Grid (V2G) Impact Studies 62 -- 4.8 DER Sizing of Microgrids 62 -- 4.9 Ancillary Services Studies 62 -- 4.10 Power Quality Studies 63 -- 4.11 Simulation Studies and Tools 63 -- 5 Control, Monitoring, and Protection Strategies 65 -- 5.1 Enhanced Control Strategy - Level 1 Function 65 -- 5.1.1 Current-Control Scheme 66 -- 5.1.2 Voltage Regulation Scheme 68 -- 5.1.3 Frequency Regulation Scheme 68 -- 5.1.4 Enhanced Control Strategy Under Network Faults 68 -- 5.2 Decoupled Control Strategy - Level 1 Function 70. 5.3 Electronically Coupled Distributed Generation Control Loops - Level 1 Function 71 -- 5.3.1 Voltage Regulation 71 -- 5.3.2 Frequency Regulation 71 -- 5.4 Energy Storage System Control Loops - Level 1 Function 72 -- 5.4.1 Voltage Regulation 72 -- 5.4.2 Frequency Regulation 74 -- 5.5 Synchronous Generator (SG) Control Loops - Level 1 Function 77 -- 5.5.1 Voltage Regulation 77 -- 5.5.2 Frequency Regulation 77 -- 5.6 Control of Multiple Source Microgrid - Level 1 Function 77 -- 5.7 Fault Current Limiting Control Strategy - Level 1 Function 80 -- 5.8 Mitigating the Impact on Protection System - Level 1 Function 80 -- 5.9 Adaptive Control Strategy - Level 2 Function 81 -- 5.10 Generalized Control Strategy - Level 2 Function 81 -- 5.11 Multi-DER Control - Level 2 Function 83 -- 5.12 Centralized Microgrid Controller Functions - Level 3 Function 84 -- 5.13 Protection and Control Requirements 85 -- 5.14 Communication-Assisted Protection and Control 85 -- 5.15 Fault Current Control of DER 86 -- 5.16 Load Monitoring for Microgrid Control - Level 3 Function 87 -- 5.17 Interconnection Transformer Protection 88 -- 5.18 Volt-VAR Optimization Control - Level 3 Function 89 -- 6 Information and Communication Systems 91 -- 6.1 IT and Communication Requirements in a Microgrid 91 -- 6.1.1 HAN Communications 92 -- 6.1.2 LAN Communications 92 -- 6.1.3 WAN Communications 94 -- 6.2 Technological Options for Communication Systems 94 -- 6.2.1 Cellular/Radio Frequency 95 -- 6.2.2 Cable/DSL 95 -- 6.2.3 Ethernet 95 -- 6.2.4 Fiber Optic SONET/SDH and E/GPON over Fiber Optic Links 96 -- 6.2.5 Microwave 96 -- 6.2.6 Power Line Communication 96 -- 6.2.7 WiFi (IEEE 802.11) 96 -- 6.2.8 WiMAX (IEEE 802.16) 96 -- 6.2.9 ZigBee 97 -- 6.3 IT and Communication Design Examples 97 -- 6.3.1 Universal Communication Infrastructure 97 -- 6.3.2 Grid Integration Requirements, Standard, Codes, and Regulatory Considerations 97 -- 6.3.2.1 Recommended Signaling Scheme and Capacity Limit of PLC Under Bernoulli-Gaussian Impulsive Noise 98. 6.3.2.2 Studying and Developing Relevant Networking Techniques for an Efficient and Reliable Smart Grid Communication Network (SGCN) 98 -- 6.3.3 Distribution Automation 98 -- 6.3.3.1 Apparent Power Signature Based Islanding Detection 98 -- 6.3.3.2 ZigBee in Electricity Substations 99 -- 6.3.4 Integrated Data Management and Portals 99 -- 6.3.4.1 The Multi Agent Volt-VAR Optimization (VVO) Engine 99 -- 7 Power and Communication Systems 101 -- 7.1 Example of Real-Time Systems Using the IEC 61850 Communication Protocol 103 -- 8 System Studies and Requirements 105 -- 8.1 Data and Specification Requirements 105 -- 8.1.1 Topology-Related Characteristics 107 -- 8.1.2 Demand-Related Characteristics 108 -- 8.1.3 Economics- and Environment-Related Characteristics 108 -- 8.2 Microgrid Design Criteria 108 -- 8.2.1 Reliability and Resilience 108 -- 8.2.1.1 Reliability 109 -- 8.2.1.2 Resilience 109 -- 8.2.2 DER Technologies 109 -- 8.2.2.1 Electric Storage Systems 109 -- 8.2.2.2 Photovoltaic Solar Power 110 -- 8.2.2.3 Wind Power 111 -- 8.2.3 DER Sizing 112 -- 8.2.4 Load Prioritization 114 -- 8.2.5 Microgrid Operational States 114 -- 8.2.5.1 Grid-connected Mode 114 -- 8.2.5.2 Transition to Islanded Mode 115 -- 8.2.5.3 Islanded Mode 115 -- 8.2.5.4 Transition to Grid-connected Mode 116 -- 8.3 Design Standards and Application Guides 116 -- 8.3.1 ANSI/NEMA 116 -- 8.3.2 IEEE 116 -- 8.3.3 UL 118 -- 8.3.4 NEC 118 -- 8.3.5 IEC 118 -- 8.3.6 CIGRE 118 -- 9 Sample Case Studies for Real-Time Operation 121 -- 9.1 Operational Planning Studies 121 -- 9.2 Economic and Technical Feasibility Studies 122 -- 9.3 Policy and Regulatory Framework Studies 123 -- 9.4 Power-Quality Studies 125 -- 9.5 Stability Studies 125 -- 9.6 Microgrid Design Studies 128 -- 9.7 Communication and SCADA System Studies 129 -- 9.8 Testing and Evaluation Studies 129 -- 9.9 Example Studies 130 -- 10 Microgrid Use Cases 133 -- 10.1 Energy Management System Functional Requirements Use Case 133 -- 10.2 Protection 136 -- 10.3 Intentional Islanding 139. 11 Testing and Case Studies 143 -- 11.1 EMS Economic Dispatch 143 -- 11.1.1 Applicable Design on the Campus Microgrid 143 -- 11.1.2 Design Guidelines 144 -- 11.1.3 Multi-Objective Optimization - Example 145 -- 11.1.3.1 System Description 145 -- 11.1.3.2 Optimization Formulation 146 -- 11.1.4 Results and Discussion 149 -- 11.1.4.1 Comparison to Existing Campus DEMS 149 -- 11.1.4.2 Business Case Overview 152 -- 11.2 Voltage and Reactive Power Control 153 -- 11.2.1 VVO/CVR Architecture 153 -- 11.3 Microgrid Anti-Islanding 155 -- 11.3.1 Test System 156 -- 11.3.1.1 Distribution System 156 -- 11.3.1.2 Inverter System 158 -- 11.3.2 Tests Performed and Results 158 -- 11.3.2.1 Nuisance Tripping 159 -- 11.3.2.2 Islanding 160 -- 11.4 Real-Time Testing 166 -- 11.4.1 Hardware-In-The-Loop Real Time Test Bench 167 -- 11.4.2 Real-Time System Using IEC 61850 Communication Protocol 169 -- 12 Conclusion 173 -- 12.1 Challenges and Methodologies 173 -- 12.1.1 Theme 1 - Operation, Control, and Protection of Smart Microgrids 173 -- 12.1.1.1 Topic 1.1 - Control, Operation, and Renewables for Remote Smart Microgrids 174 -- 12.1.1.2 Topic 1.2 - Distributed Control, Hybrid Control, and Power Management for Smart Microgrids 176 -- 12.1.1.3 Topic 1.3 - Status Monitoring, Disturbance Detection, Diagnostics, and Protection for Smart Microgrids 180 -- 12.1.1.4 Topic 1.4 - Operational Strategies and Storage Technologies to Address Barriers for Very High Penetration of DG Units in Smart Microgrids 183 -- 12.1.2 Theme 2: Smart Microgrid Planning, Optimization, and Regulatory Issues 185 -- 12.1.2.1 Topic 2.1 Cost-Benefits Framework - Secondary Benefits and Ancillary Services 185 -- 12.1.2.2 Topic 2.2 Energy and Supply Security Considerations 187 -- 12.1.2.3 Topic 2.3 Demand-Response Technologies and Strategies - Energy Management and Metering 190 -- 12.1.2.4 Topic 2.4: Integration Design Guidelines and Performance Metrics - Study Cases 192 -- 12.1.3 Theme 3: Smart Microgrid Communication and Information Technologies 193. 12.1.3.1 Topic 3.1 Universal Communication Infrastructure 194 -- 12.1.3.2 Topic 3.2 Grid Integration Requirements, Standards, Codes, and Regulatory Considerations 195 -- 12.1.3.3 Topic 3.3: Distribution Automation Communications: Sensors, Condition Monitoring, and Fault Detection (Topic Leader: Meng; Collaborators: Chang, Li, Iravani, Farhangi, NB Power) 200 -- 12.1.3.4 Topic 3.4: Integrated Data Management and Portals 202 -- 12.2 Final Thoughts 204 -- References 205 -- Index 211.
Restricted to subscribers or individual electronic text purchasers.
A practical guide to microgrid systems architecture, design topologies, control strategies and integration approaches Microgrid Planning and Design offers a detailed and authoritative guide to microgrid systems. The authors - noted experts on the topic - explore what is involved in the design of a microgrid, examine the process of mapping designs to accommodate available technologies and reveal how to determine the efficacy of the final outcome. This practical book is a compilation of collaborative research results drawn from a community of experts in 8 different universities over a 6-year period. Microgrid Planning and Design contains a review of microgrid benchmarks for the electric power system and covers the mathematical modeling that can be used during the microgrid design processes. The authors include real-world case studies, validated benchmark systems and the components needed to plan and design an effective microgrid system. This important guide: -Offers a practical and up-to-date book that examines leading edge technologies related to the smart grid -Covers in detail all aspects of a microgrid from conception to completion -Explores a modeling approach that combines power and communication systems -Recommends modeling details that are appropriate for the type of study to be performed -Defines typical system studies and requirements associated with the operation of the microgrid Written forgraduate students and professionals in the electrical engineering industry, Microgrid Planning and Design is a guide to smart microgrids that can help with their strategic energy objectives such as increasing reliability, efficiency, autonomy and reducing greenhouse gases.
Mode of access: World Wide Web
9781119453550
10.1002/9781119453550 doi
Microgrids (Smart power grids)
Electronic books.
TK3105
621.31
Microgrid planning and design : a concise guide / Hassan Farhangi, Geza Joos. - 1 PDF (256 pages).
About the Authors xiii -- Disclaimer xv -- List of Figures xvii -- List of Tables xxiii -- Foreword xxv -- Preface xxvii -- Acknowledgments xxix -- Acronyms and Abbreviations xxxi -- 1 Introduction 1 -- 1.1 Why Microgrid Research Requires a Network Approach 5 -- 1.2 NSERC Smart MicroGrid Network (NSMG-Net) - The Canadian Experience 7 -- 1.3 Research Platform 8 -- 1.4 Research Program and Scope 9 -- 1.5 Research Themes in Smart Microgrids 10 -- 1.5.1 Theme 1: Operation, Control, and Protection of Smart Microgrids 10 -- 1.5.1.1 Topic 1.1: Control, Operation, and Renewables for Remote Smart Microgrids 12 -- 1.5.1.2 Topic 1.2: Distributed Control, Hybrid Control, and Power Management for Smart Microgrids 12 -- 1.5.1.3 Topic 1.3: Status Monitoring, Disturbance Detection, Diagnostics, and Protection for Smart Microgrids 13 -- 1.5.1.4 Topic 1.4: Operational Strategies and Storage Technologies to Address Barriers for Very High Penetration of DG Units in Smart Microgrids 13 -- 1.5.2 Theme 2 Overview: Smart Microgrid Planning, Optimization, and Regulatory Issues 14 -- 1.5.2.1 Topic 2.1: Cost-Benefits Framework - Secondary Benefits and Ancillary Services 16 -- 1.5.2.2 Topic 2.2: Energy and Supply Security Considerations 16 -- 1.5.2.3 Topic 2.3: Demand Response Technologies and Strategies - Energy Management and Metering 16 -- 1.5.2.4 Topic 2.4: Integration Design Guidelines and Performance Metrics - Study Cases 17 -- 1.5.3 Theme 3: Smart Microgrid Communication and Information Technologies 18 -- 1.5.3.1 Topic 3.1: Universal Communication Infrastructure 20 -- 1.5.3.2 Topic 3.2: Grid Integration Requirements, Standards, Codes, and Regulatory Considerations 20 -- 1.5.3.3 Topic 3.3: Distribution Automation Communications: Sensors, Condition Monitoring, and Fault Detection 20 -- 1.5.3.4 Topic 3.4: Integrated Data Management and Portals 21 -- 1.6 Microgrid Design Process and Guidelines 21 -- 1.7 Microgrid Design Objectives 23 -- 1.8 Book Organization 23 -- 2 Microgrid Benchmarks 25. 2.1 Campus Microgrid 25 -- 2.1.1 Campus Microgrid Description 25 -- 2.1.2 Campus Microgrid Subsystems 27 -- 2.1.2.1 Components and Subsystems 27 -- 2.1.2.2 Automation and Instrumentation 28 -- 2.2 Utility Microgrid 30 -- 2.2.1 Description 30 -- 2.2.2 Utility Microgrid Subsystems 32 -- 2.3 CIGRE Microgrid 33 -- 2.3.1 CIGRE Microgrid Description 33 -- 2.3.2 CIGRE Microgrid Subsystems 35 -- 2.3.2.1 Load 35 -- 2.3.2.2 Flexibility 35 -- 2.4 Benchmarks Selection Justification 36 -- 3 Microgrid Elements and Modeling 37 -- 3.1 Load Model 37 -- 3.1.1 Current Source Based 37 -- 3.1.2 Grid-Tie Inverter Based 38 -- 3.2 Power Electronic Converter Models 39 -- 3.3 PV Model 41 -- 3.4 Wind Turbine Model 43 -- 3.5 Multi-DER Microgrids Modeling 44 -- 3.6 Energy Storage System Model 47 -- 3.7 Electronically Coupled DER (EC-DER) Model 49 -- 3.8 Synchronous Generator Model 50 -- 3.9 Low Voltage Networks Model 50 -- 3.10 Distributed Slack Model 51 -- 3.11 VVO/CVR Modeling 53 -- 4 Analysis and Studies Using Recommended Models 57 -- 4.1 Energy Management Studies 57 -- 4.2 Voltage Control Studies 57 -- 4.3 Frequency Control Studies 58 -- 4.4 Transient Stability Studies 58 -- 4.5 Protection Coordination and Selectivity Studies 59 -- 4.6 Economic Feasibility Studies 59 -- 4.6.1 Benefits Identification 59 -- 4.6.2 Reduced Energy Cost 59 -- 4.6.3 Reliability Improvement 60 -- 4.6.4 Investment Deferral 61 -- 4.6.5 Power Fluctuation 61 -- 4.6.6 Improved Efficiency 61 -- 4.6.7 Reduced Emission 62 -- 4.7 Vehicle-to-Grid (V2G) Impact Studies 62 -- 4.8 DER Sizing of Microgrids 62 -- 4.9 Ancillary Services Studies 62 -- 4.10 Power Quality Studies 63 -- 4.11 Simulation Studies and Tools 63 -- 5 Control, Monitoring, and Protection Strategies 65 -- 5.1 Enhanced Control Strategy - Level 1 Function 65 -- 5.1.1 Current-Control Scheme 66 -- 5.1.2 Voltage Regulation Scheme 68 -- 5.1.3 Frequency Regulation Scheme 68 -- 5.1.4 Enhanced Control Strategy Under Network Faults 68 -- 5.2 Decoupled Control Strategy - Level 1 Function 70. 5.3 Electronically Coupled Distributed Generation Control Loops - Level 1 Function 71 -- 5.3.1 Voltage Regulation 71 -- 5.3.2 Frequency Regulation 71 -- 5.4 Energy Storage System Control Loops - Level 1 Function 72 -- 5.4.1 Voltage Regulation 72 -- 5.4.2 Frequency Regulation 74 -- 5.5 Synchronous Generator (SG) Control Loops - Level 1 Function 77 -- 5.5.1 Voltage Regulation 77 -- 5.5.2 Frequency Regulation 77 -- 5.6 Control of Multiple Source Microgrid - Level 1 Function 77 -- 5.7 Fault Current Limiting Control Strategy - Level 1 Function 80 -- 5.8 Mitigating the Impact on Protection System - Level 1 Function 80 -- 5.9 Adaptive Control Strategy - Level 2 Function 81 -- 5.10 Generalized Control Strategy - Level 2 Function 81 -- 5.11 Multi-DER Control - Level 2 Function 83 -- 5.12 Centralized Microgrid Controller Functions - Level 3 Function 84 -- 5.13 Protection and Control Requirements 85 -- 5.14 Communication-Assisted Protection and Control 85 -- 5.15 Fault Current Control of DER 86 -- 5.16 Load Monitoring for Microgrid Control - Level 3 Function 87 -- 5.17 Interconnection Transformer Protection 88 -- 5.18 Volt-VAR Optimization Control - Level 3 Function 89 -- 6 Information and Communication Systems 91 -- 6.1 IT and Communication Requirements in a Microgrid 91 -- 6.1.1 HAN Communications 92 -- 6.1.2 LAN Communications 92 -- 6.1.3 WAN Communications 94 -- 6.2 Technological Options for Communication Systems 94 -- 6.2.1 Cellular/Radio Frequency 95 -- 6.2.2 Cable/DSL 95 -- 6.2.3 Ethernet 95 -- 6.2.4 Fiber Optic SONET/SDH and E/GPON over Fiber Optic Links 96 -- 6.2.5 Microwave 96 -- 6.2.6 Power Line Communication 96 -- 6.2.7 WiFi (IEEE 802.11) 96 -- 6.2.8 WiMAX (IEEE 802.16) 96 -- 6.2.9 ZigBee 97 -- 6.3 IT and Communication Design Examples 97 -- 6.3.1 Universal Communication Infrastructure 97 -- 6.3.2 Grid Integration Requirements, Standard, Codes, and Regulatory Considerations 97 -- 6.3.2.1 Recommended Signaling Scheme and Capacity Limit of PLC Under Bernoulli-Gaussian Impulsive Noise 98. 6.3.2.2 Studying and Developing Relevant Networking Techniques for an Efficient and Reliable Smart Grid Communication Network (SGCN) 98 -- 6.3.3 Distribution Automation 98 -- 6.3.3.1 Apparent Power Signature Based Islanding Detection 98 -- 6.3.3.2 ZigBee in Electricity Substations 99 -- 6.3.4 Integrated Data Management and Portals 99 -- 6.3.4.1 The Multi Agent Volt-VAR Optimization (VVO) Engine 99 -- 7 Power and Communication Systems 101 -- 7.1 Example of Real-Time Systems Using the IEC 61850 Communication Protocol 103 -- 8 System Studies and Requirements 105 -- 8.1 Data and Specification Requirements 105 -- 8.1.1 Topology-Related Characteristics 107 -- 8.1.2 Demand-Related Characteristics 108 -- 8.1.3 Economics- and Environment-Related Characteristics 108 -- 8.2 Microgrid Design Criteria 108 -- 8.2.1 Reliability and Resilience 108 -- 8.2.1.1 Reliability 109 -- 8.2.1.2 Resilience 109 -- 8.2.2 DER Technologies 109 -- 8.2.2.1 Electric Storage Systems 109 -- 8.2.2.2 Photovoltaic Solar Power 110 -- 8.2.2.3 Wind Power 111 -- 8.2.3 DER Sizing 112 -- 8.2.4 Load Prioritization 114 -- 8.2.5 Microgrid Operational States 114 -- 8.2.5.1 Grid-connected Mode 114 -- 8.2.5.2 Transition to Islanded Mode 115 -- 8.2.5.3 Islanded Mode 115 -- 8.2.5.4 Transition to Grid-connected Mode 116 -- 8.3 Design Standards and Application Guides 116 -- 8.3.1 ANSI/NEMA 116 -- 8.3.2 IEEE 116 -- 8.3.3 UL 118 -- 8.3.4 NEC 118 -- 8.3.5 IEC 118 -- 8.3.6 CIGRE 118 -- 9 Sample Case Studies for Real-Time Operation 121 -- 9.1 Operational Planning Studies 121 -- 9.2 Economic and Technical Feasibility Studies 122 -- 9.3 Policy and Regulatory Framework Studies 123 -- 9.4 Power-Quality Studies 125 -- 9.5 Stability Studies 125 -- 9.6 Microgrid Design Studies 128 -- 9.7 Communication and SCADA System Studies 129 -- 9.8 Testing and Evaluation Studies 129 -- 9.9 Example Studies 130 -- 10 Microgrid Use Cases 133 -- 10.1 Energy Management System Functional Requirements Use Case 133 -- 10.2 Protection 136 -- 10.3 Intentional Islanding 139. 11 Testing and Case Studies 143 -- 11.1 EMS Economic Dispatch 143 -- 11.1.1 Applicable Design on the Campus Microgrid 143 -- 11.1.2 Design Guidelines 144 -- 11.1.3 Multi-Objective Optimization - Example 145 -- 11.1.3.1 System Description 145 -- 11.1.3.2 Optimization Formulation 146 -- 11.1.4 Results and Discussion 149 -- 11.1.4.1 Comparison to Existing Campus DEMS 149 -- 11.1.4.2 Business Case Overview 152 -- 11.2 Voltage and Reactive Power Control 153 -- 11.2.1 VVO/CVR Architecture 153 -- 11.3 Microgrid Anti-Islanding 155 -- 11.3.1 Test System 156 -- 11.3.1.1 Distribution System 156 -- 11.3.1.2 Inverter System 158 -- 11.3.2 Tests Performed and Results 158 -- 11.3.2.1 Nuisance Tripping 159 -- 11.3.2.2 Islanding 160 -- 11.4 Real-Time Testing 166 -- 11.4.1 Hardware-In-The-Loop Real Time Test Bench 167 -- 11.4.2 Real-Time System Using IEC 61850 Communication Protocol 169 -- 12 Conclusion 173 -- 12.1 Challenges and Methodologies 173 -- 12.1.1 Theme 1 - Operation, Control, and Protection of Smart Microgrids 173 -- 12.1.1.1 Topic 1.1 - Control, Operation, and Renewables for Remote Smart Microgrids 174 -- 12.1.1.2 Topic 1.2 - Distributed Control, Hybrid Control, and Power Management for Smart Microgrids 176 -- 12.1.1.3 Topic 1.3 - Status Monitoring, Disturbance Detection, Diagnostics, and Protection for Smart Microgrids 180 -- 12.1.1.4 Topic 1.4 - Operational Strategies and Storage Technologies to Address Barriers for Very High Penetration of DG Units in Smart Microgrids 183 -- 12.1.2 Theme 2: Smart Microgrid Planning, Optimization, and Regulatory Issues 185 -- 12.1.2.1 Topic 2.1 Cost-Benefits Framework - Secondary Benefits and Ancillary Services 185 -- 12.1.2.2 Topic 2.2 Energy and Supply Security Considerations 187 -- 12.1.2.3 Topic 2.3 Demand-Response Technologies and Strategies - Energy Management and Metering 190 -- 12.1.2.4 Topic 2.4: Integration Design Guidelines and Performance Metrics - Study Cases 192 -- 12.1.3 Theme 3: Smart Microgrid Communication and Information Technologies 193. 12.1.3.1 Topic 3.1 Universal Communication Infrastructure 194 -- 12.1.3.2 Topic 3.2 Grid Integration Requirements, Standards, Codes, and Regulatory Considerations 195 -- 12.1.3.3 Topic 3.3: Distribution Automation Communications: Sensors, Condition Monitoring, and Fault Detection (Topic Leader: Meng; Collaborators: Chang, Li, Iravani, Farhangi, NB Power) 200 -- 12.1.3.4 Topic 3.4: Integrated Data Management and Portals 202 -- 12.2 Final Thoughts 204 -- References 205 -- Index 211.
Restricted to subscribers or individual electronic text purchasers.
A practical guide to microgrid systems architecture, design topologies, control strategies and integration approaches Microgrid Planning and Design offers a detailed and authoritative guide to microgrid systems. The authors - noted experts on the topic - explore what is involved in the design of a microgrid, examine the process of mapping designs to accommodate available technologies and reveal how to determine the efficacy of the final outcome. This practical book is a compilation of collaborative research results drawn from a community of experts in 8 different universities over a 6-year period. Microgrid Planning and Design contains a review of microgrid benchmarks for the electric power system and covers the mathematical modeling that can be used during the microgrid design processes. The authors include real-world case studies, validated benchmark systems and the components needed to plan and design an effective microgrid system. This important guide: -Offers a practical and up-to-date book that examines leading edge technologies related to the smart grid -Covers in detail all aspects of a microgrid from conception to completion -Explores a modeling approach that combines power and communication systems -Recommends modeling details that are appropriate for the type of study to be performed -Defines typical system studies and requirements associated with the operation of the microgrid Written forgraduate students and professionals in the electrical engineering industry, Microgrid Planning and Design is a guide to smart microgrids that can help with their strategic energy objectives such as increasing reliability, efficiency, autonomy and reducing greenhouse gases.
Mode of access: World Wide Web
9781119453550
10.1002/9781119453550 doi
Microgrids (Smart power grids)
Electronic books.
TK3105
621.31