Tolstrup, Morten,
Indoor radio planning : a practical guide for 2G, 3G and 4G / Morten Tolstrup. - Third edition. - 1 PDF (616 pages).
Includes bibliographical references and index.
Foreword by Professor Simon Saunders xvii -- Preface to the Third Edition xix -- 7 years! xix -- Certified DAS Planning Training xix -- More on 4G, Small Cells, Applications and RF Basics xx -- Useful Tool? xx -- Thanks! xx -- Preface to the Second Edition xxi -- This is Still Not a Book for Scientists! xxi -- The Practical Approach xxii -- Keep the Originals! xxii -- Preface to the First Edition xxiii -- This is Not a Book for Scientists xxiii -- The Practical Approach xxiii -- Acknowledgments xxv -- Second Edition xxv -- First Edition xxvi -- 1 Introduction 1 -- 2 Overview of Cellular Systems 5 -- 2.1 Mobile Telephony 5 -- 2.1.1 Cellular Systems 5 -- 2.1.2 Radio Transmission in General 8 -- 2.1.3 The Cellular Concept 8 -- 2.1.4 Digital Cellular Systems 9 -- 2.2 Introduction to GSM (2G) 10 -- 2.2.1 GSM (2G) 10 -- 2.2.2 2G/GSM Radio Features 11 -- 2.2.3 Mobility Management in GSM 16 -- 2.2.4 GSM Signaling 22 -- 2.2.5 GSM Network Architecture 25 -- 2.3 Universal Mobile Telecommunication System/3G 27 -- 2.3.1 The Most Important 3G/UMTS Radio Design Parameters 28 -- 2.3.2 The 3G/UMTS Radio Features 28 -- 2.3.3 3G/UMTS Noise Control 38 -- 2.3.4 3G/UMTS Handovers 42 -- 2.3.5 UMTS/3G Power Control 46 -- 2.3.6 UMTS and Multipath Propagation 49 -- 2.3.7 UMTS Signaling 52 -- 2.3.8 The UMTS Network Elements 55 -- 2.4 Introduction to HSPA 57 -- 2.4.1 Introduction 57 -- 2.4.2 Wi‐Fi 58 -- 2.4.3 Introduction to HSDPA 60 -- 2.4.4 Indoor HSPA Coverage 61 -- 2.4.5 Indoor HSPA Planning for Maximum Performance 63 -- 2.4.6 HSDPA Coverage from the Macro Network 64 -- 2.4.7 Passive DAS and HSPA 66 -- 2.4.8 Short Introduction to HSPA+ 68 -- 2.4.9 Conclusion 68 -- 2.5 Modulation 69 -- 2.5.1 Shannon's Formula 69 -- 2.5.2 BPSK 70 -- 2.5.3 QPSK / Quadrature Phase Shift Keying 70 -- 2.5.4 Higher Order Modulation 16‐64QAM 70 -- 2.5.5 EVM Error Vector Magnitude 72 -- 2.5.6 Adaptive Modulation, Planning for Highest Data Speed 72 -- 2.6 Advanced Antenna Systems for 3G/4G 74 -- 2.6.1 SISO/MIMO Systems 75. 2.6.2 SISO, Single Input Single Output 75 -- 2.6.3 SIMO, Single Input Multiple Output 76 -- 2.6.4 MISO, Multiple Inputs Single Output 76 -- 2.6.5 MIMO, Multiple Inputs Multiple Outputs 77 -- 2.6.6 Planning for Optimum Data Speeds Using MIMO 79 -- 2.7 Short Introduction to 4G/LTE 80 -- 2.7.1 Motivation behind LTE and E‐UTRAN 80 -- 2.7.2 Key Features of LTE E‐UTRAN 82 -- 2.7.3 System Architecture Evolution / SAE 84 -- 2.7.4 EPS / Evolved Packet System 84 -- 2.7.5 Evolved Packet Core Network / EPC 85 -- 2.7.6 LTE Reference Points/Interfaces 87 -- 2.7.7 The LTE RF Channel Bandwidth 87 -- 2.7.8 OFDM / Orthogonal Frequency Division Multiplexing 88 -- 2.7.9 OFDMA / Orthogonal Frequency Division Multiple Access 89 -- 2.7.10 SC‐FDMA / Single Carrier Frequency Division Multiple Access 90 -- 2.7.11 LTE Slot Structure 91 -- 2.7.12 User Scheduling 92 -- 2.7.13 Downlink Reference Signals 92 -- 2.7.14 The 4G/LTE Channel 92 -- 2.7.15 LTE Communication and Control Channels 93 -- 2.7.16 Radio Resource Management in LTE 96 -- 3 Indoor Radio Planning 111 -- 3.1 Why is In‐building Coverage Important? 111 -- 3.1.1 Commercial and Technical Evaluation 112 -- 3.1.2 The Main Part of the Mobile Traffic is Indoors 112 -- 3.1.3 Some 70 / 80% of Mobile Traffic is Inside Buildings 112 -- 3.1.4 Indoor Solutions Can Make a Great Business Case 112 -- 3.1.5 Business Evaluation 113 -- 3.1.6 Coverage Levels/Cost Level 113 -- 3.1.7 Evaluate the Value of the Proposed Solution 113 -- 3.2 Indoor Coverage from the Macro Layer 114 -- 3.2.1 More Revenue with Indoor Solutions 114 -- 3.2.2 The Problem Reaching Indoor Mobile Users 115 -- 3.3 The Indoor 3G/HSPA Challenge 117 -- 3.3.1 3G Orthogonality Degradation 117 -- 3.3.2 Power Load per User 120 -- 3.3.3 Interference Control in the Building 120 -- 3.3.4 The Soft Handover Load 120 -- 3.3.5 3G/HSPA Indoor Coverage Conclusion 121 -- 3.4 Common 3G/4G Rollout Mistakes 122 -- 3.4.1 The Macro Mistake 122 -- 3.4.2 Do Not Apply 2G Strategies 123 -- 3.4.3 The Correct Way to Plan 3G/4G Indoor Coverage 123. 3.5 The Basics of Indoor RF Planning 124 -- 3.5.1 Isolation is the Key 124 -- 3.5.2 Tinted Windows Will Help Isolation 124 -- 3.5.3 The 'High‐rise Problem' 125 -- 3.5.4 Radio Service Quality 128 -- 3.5.5 Indoor RF Design Levels 129 -- 3.5.6 The Zone Planning Concept 129 -- 3.6 RF Metrics Basics 131 -- 3.6.1 Gain 132 -- 3.6.2 Gain Factor 132 -- 3.6.3 Decibel (dB) 133 -- 3.6.4 dBm 135 -- 3.6.5 Equivalent Isotropic Radiated Power (EiRP) 136 -- 3.6.6 Delays in the DAS 136 -- 3.6.7 Offset of the Cell Size 139 -- 4 Distributed Antenna Systems 141 -- 4.1 What Type of Distributed Antenna System is Best? 141 -- 4.1.1 Passive or Active DAS 142 -- 4.1.2 Learn to Use all the Indoor Tools 142 -- 4.1.3 Combine the Tools 143 -- 4.2 Passive Components 143 -- 4.2.1 General 143 -- 4.2.2 Coax Cable 143 -- 4.2.3 Splitters 144 -- 4.2.4 Taps/Uneven Splitters 145 -- 4.2.5 Attenuators 146 -- 4.2.6 Dummy Loads or Terminators 147 -- 4.2.7 Circulators 147 -- 4.2.8 A 3 dB Coupler (90�A Hybrid) 148 -- 4.2.9 Power Load on Passive Components 150 -- 4.2.10 Filters 151 -- 4.3 The Passive DAS 151 -- 4.3.1 Planning the Passive DAS 151 -- 4.3.2 Main Points About Passive DAS 153 -- 4.3.3 Applications for Passive DAS 154 -- 4.4 Active DAS 154 -- 4.4.1 Easy to Plan 155 -- 4.4.2 Pure Active DAS for Large Buildings 155 -- 4.4.3 Pure Active DAS for Small to Medium‐size Buildings 159 -- 4.4.4 Active Fiber DAS 160 -- 4.5 Hybrid Active DAS Solutions 163 -- 4.5.1 Data Performance on the Uplink 163 -- 4.5.2 DL Antenna Power 163 -- 4.5.3 Antenna Supervision 164 -- 4.5.4 Installation Challenges 164 -- 4.5.5 The Elements of the Hybrid Active DAS 164 -- 4.6 Other Hybrid DAS Solutions 166 -- 4.6.1 In‐line BDA Solution 166 -- 4.6.2 Combining Passive and Active Indoor DAS 167 -- 4.6.3 Combining Indoor and Outdoor Coverage 168 -- 4.7 Indoor DAS for MIMO Applications 171 -- 4.7.1 Calculating the Ideal MIMO Antenna Distance Separation for Indoor DAS 171 -- 4.7.2 Make Both MIMO Antennas 'Visible' for the Users 173 -- 4.7.3 Passive DAS and MIMO 178. 4.7.4 Pure Active DAS for MIMO 179 -- 4.7.5 Hybrid DAS and MIMO 181 -- 4.7.6 Upgrading Existing DAS to MIMO 181 -- 4.8 Using Repeaters for Indoor DAS Coverage 182 -- 4.8.1 Basic Repeater Terms 184 -- 4.8.2 Repeater Types 189 -- 4.8.3 Repeater Considerations in General 192 -- 4.9 Repeaters for Rail Solutions 195 -- 4.9.1 Repeater Principle on a Train 195 -- 4.9.2 Onboard DAS Solutions 197 -- 4.9.3 Repeater Features for Mobile Rail Deployment 197 -- 4.9.4 Practical Concerns with Repeaters on Rail 199 -- 4.10 Active DAS Data 200 -- 4.10.1 Gain and Delay 201 -- 4.10.2 Power Per Carrier 202 -- 4.10.3 Bandwidth, Ripple 202 -- 4.10.4 The 1 dB Compression Point 203 -- 4.10.5 IP3 Third‐order Intercept Point 204 -- 4.10.6 Harmonic Distortion, Inter‐modulation 205 -- 4.10.7 Spurious Emissions 205 -- 4.10.8 Noise Figure 205 -- 4.10.9 MTBF 206 -- 4.10.10 Dynamic Range and Near‐far Effect 207 -- 4.11 Electromagnetic Radiation, EMR 211 -- 4.11.1 ICNIRP EMR Guidelines 211 -- 4.11.2 Mobiles are the Strongest Source of EMR 212 -- 4.11.3 Indoor DAS will Provide Lower EMR Levels 213 -- 4.12 Conclusion 214 -- 5 Designing Indoor DAS Solutions 215 -- 5.1 The Indoor Planning Procedure 215 -- 5.1.1 Indoor Planning Process Flow 215 -- 5.1.2 The RF Planning Part of the Process 217 -- 5.1.3 The Site Survey 218 -- 5.1.4 Time Frame for Implementing Indoor DAS 219 -- 5.1.5 Post Implementation 219 -- 5.2 The RF Design Process 220 -- 5.2.1 The Role of the RF Planner 220 -- 5.2.2 RF Measurements 220 -- 5.2.3 The Initial RF Measurements 221 -- 5.2.4 Measurements of Existing Coverage Level 222 -- 5.2.5 RF Survey Measurement 223 -- 5.2.6 Planning the Measurements 224 -- 5.2.7 Post Implementation Measurements 226 -- 5.2.8 Free Space Loss 227 -- 5.2.9 The One Meter Test 227 -- 5.3 Designing the Optimum Indoor Solution 229 -- 5.3.1 Adapt the Design to Reality 229 -- 5.3.2 Learn from the Mistakes of Others 229 -- 5.3.3 Common Mistakes When Designing Indoor Solutions 232 -- 5.3.4 Planning the Antenna Locations 233. 5.3.5 The 'Corridor Effect' 235 -- 5.3.6 Fire Cells Inside the Building 236 -- 5.3.7 Indoor Antenna Performance 236 -- 5.3.8 The 'Corner Office Problem' 243 -- 5.3.9 Interleaving Antennas In‐between Floors 244 -- 5.3.10 Planning for Full Indoor Coverage 247 -- 5.3.11 The Cost of Indoor Design Levels 249 -- 5.4 Indoor Design Strategy 250 -- 5.4.1 Hotspot Planning Inside Buildings 250 -- 5.4.2 Special Design Considerations 255 -- 5.4.3 The Design Flow 256 -- 5.4.4 Placing the Indoor Antennas 256 -- 5.5 Handover Considerations Inside Buildings 257 -- 5.5.1 Indoor 2G Handover Planning 258 -- 5.5.2 Indoor 3G Handover Planning 259 -- 5.5.3 Handover Zone Size 261 -- 5.6 Elevator Coverage 262 -- 5.6.1 Elevator Installation Challenges 262 -- 5.6.2 The Most Common Coverage Elevator Solution 262 -- 5.6.3 Antenna Inside the Shaft 262 -- 5.6.4 Repeater in the Lift‐car 264 -- 5.6.5 DAS Antenna in the Lift‐car 264 -- 5.6.6 Passive Repeaters in Elevators 265 -- 5.6.7 Real‐life Example of a Passive Repeater in an Elevator 266 -- 5.6.8 Control the Elevator HO Zone 267 -- 5.6.9 Elevator HO Zone Size 267 -- 5.6.10 Challenges with Elevator Repeaters for Large Shafts 268 -- 5.7 Multioperator Systems 276 -- 5.7.1 Multioperator DAS Solutions Compatibility 276 -- 5.7.2 The Combiner System 283 -- 5.7.3 Inter‐modulation Distortion 284 -- 5.7.4 How to Minimize PIM 285 -- 5.7.5 IMD Products 286 -- 5.8 Co‐existence Issues for 2G/3G 287 -- 5.8.1 Spurious Emissions 287 -- 5.8.2 Combined DAS for 2G-900 and 3G 288 -- 5.8.3 Combined DAS for 2G-1800 and 3G 288 -- 5.9 Co‐existence Issues for 3G/3G 289 -- 5.9.1 Adjacent Channel Interference Power Ratio 290 -- 5.9.2 The ACIR Problem with Indoor DAS 291 -- 5.9.3 Solving the ACIR Problem Inside Buildings 292 -- 5.10 Multioperator Requirements 293 -- 5.10.1 Multioperator Agreement 294 -- 5.10.2 Parties Involved in the Indoor Project 294 -- 5.10.3 The Most Important Aspects to Cover in the MOA 294 -- 6 Traffic Dimensioning 297 -- 6.1 Erlang, the Traffic Measurement 297. 6.1.1 What is One Erlang? 298 -- 6.1.2 Call Blocking, Grade of Service 299 -- 6.1.3 The Erlang B Table 299 -- 6.1.4 User Types, User Traffic Profile 301 -- 6.1.5 Save on Cost, Use the Erlang Table 302 -- 6.1.6 When Not to Use Erlang 302 -- 6.1.7 2G Radio Channels and Erlang 303 -- 6.1.8 3G Channels and Erlang 303 -- 6.1.9 Trunking Gain, Resource Sharing 304 -- 6.1.10 Cell Configuration in Indoor Projects 305 -- 6.1.11 Busy Hour and Return on Investment Calculations 307 -- 6.1.12 Base Station Hotels 313 -- 6.2 Data Capacity 315 -- 6.2.1 Application‐driven Data Load 316 -- 6.2.2 Data offload to Wi‐Fi and Small Cells 319 -- 6.2.3 Future‐proof Your DAS to Handle More Data Load 319 -- 6.2.4 Event‐driven Data Load 323 -- 6.2.5 Calculating the Data Load 323 -- 7 Noise 327 -- 7.1 Noise Fundamentals 327 -- 7.1.1 Thermal Noise 328 -- 7.1.2 Noise Factor 329 -- 7.1.3 Noise Figure 329 -- 7.1.4 Noise Floor 329 -- 7.1.5 The Receiver Sensitivity 330 -- 7.1.6 Noise Figure of Amplifiers 331 -- 7.1.7 Noise Factor of Coax Cables 332 -- 7.2 Cascaded Noise 334 -- 7.2.1 The Friis Formula 334 -- 7.2.2 Amplifier After the Cable Loss 335 -- 7.2.3 Amplifier Prior to the Cable Loss 337 -- 7.2.4 Problems with Passive Cables and Passive DAS 339 -- 7.3 Noise Power 341 -- 7.3.1 Calculating the Noise Power of a System 342 -- 7.4 Noise Power from Parallel Systems 346 -- 7.4.1 Calculating Noise Power from Parallel Sources 346 -- 7.5 Noise Control 347 -- 7.5.1 Noise Load on Base Stations 347 -- 7.5.2 Noise and 2G Base Stations 348 -- 7.5.3 Noise and 3G Base Stations 348 -- 7.6 Updating a Passive DAS from 2G to 3G/4G 349 -- 7.6.1 The 3G/4G Challenge 349 -- 7.6.2 The 3G Problem 350 -- 7.6.3 Solution 1, In‐line BDA 351 -- 7.6.4 Solution 2: Active DAS Overlay 355 -- 7.6.5 Conclusions on Noise and Noise Control 359 -- 8 The Link Budget 361 -- 8.1 The Components and Calculations of the RF Link 362 -- 8.1.1 The Maximum Allowable Path Loss 362 -- 8.1.2 The Components in the Link Budget 362 -- 8.1.3 Link Budgets for Indoor Systems 374. 8.1.4 Passive DAS Link Budget 376 -- 8.1.5 Active DAS Link Budget 376 -- 8.1.6 The Free Space Loss 377 -- 8.1.7 The Modified Indoor Model 377 -- 8.1.8 The PLS Model 379 -- 8.1.9 Calculating the Antenna Service Radius 380 -- 8.2 4G Link Budget 382 -- 8.2.1 4G Design Levels 383 -- 8.2.2 RSRP, Reference Symbol Transmit Power 384 -- 8.2.3 4G RSSI Signal Power 385 -- 8.2.4 4G Coverage vs. Capacity 385 -- 8.2.5 4G DL RS Link Budget Example 386 -- 9 Tools for Indoor Radio Planning 389 -- 9.1 Live and Learn 389 -- 9.2 Diagram Tools 390 -- 9.2.1 Simple or Advanced? 390 -- 9.3 Radio Survey Tools 391 -- 9.3.1 Use Only Calibrated Equipment 391 -- 9.4 The Simple Tools and Tips 391 -- 9.4.1 Use a Digital Camera 391 -- 9.4.2 Use the World Wide Web 392 -- 9.4.3 Traffic Calculations 392 -- 9.5 Tools for Link Budget Calculations 392 -- 9.6 Tools for Indoor Predictions 392 -- 9.6.1 Spreadsheets Can Do Most of the Job 394 -- 9.6.2 The More Advanced RF Prediction Models 394 -- 9.7 The Advanced Toolkit (iBwave Unity, Design, and Mobile from iBwave.com) 395 -- 9.7.1 Save Time, Keep Costs and Mistakes to a Minimum 396 -- 9.7.2 Collaboration, Visibility, and Revision Controls 396 -- 9.7.3 Multisystem or Multioperator Small Cells, DAS, and Wi‐Fi 397 -- 9.7.4 The Site Survey Tool 397 -- 9.7.5 The Mobile Planning Tool 397 -- 9.7.6 Import Floor Plans 397 -- 9.7.7 Schematic Diagram 398 -- 9.7.8 Floor Plan Diagram 401 -- 9.7.9 Site Documentation 401 -- 9.7.10 Error Detection 401 -- 9.7.11 Component Database 402 -- 9.7.12 RF Propagation 403 -- 9.7.13 RF Optimization 403 -- 9.7.14 Complex Environments 404 -- 9.7.15 Importing an RF Survey 404 -- 9.7.16 Equipment List and Project Cost Report 405 -- 9.7.17 RF and Installation Report 405 -- 9.7.18 Fully Integrated 406 -- 9.7.19 Outputs from the Tool 406 -- 9.7.20 Team Collaboration 407 -- 9.7.21 Make Sure to Learn the Basics 408 -- 9.8 Tools for DAS Verification 408 -- 9.8.1 3G Example Measurement 409 -- 9.8.2 4G Example Measurement 412 -- 9.8.3 Final Word on Tools 412. 10 Optimizing the Radio Resource Management Parameters on Node B When Interfacing to an Active DAS, BDA, LNA or TMA 413 -- 10.1 Introduction 413 -- 10.1.1 3G Radio Performance is All About Noise and Power Control 413 -- 10.1.2 3G RF Parameter Reference is Different from 2G 414 -- 10.1.3 Adjust the Parameters 414 -- 10.1.4 How to Adjust this in the RAN 415 -- 10.1.5 Switch Off the LNA in Node B when Using Active DAS 415 -- 10.2 Impact of DL Power Offset 415 -- 10.2.1 Access Burst 415 -- 10.2.2 Power Offset Between Node B and the Active DAS 416 -- 10.2.3 Solution 417 -- 10.2.4 Impact on the UL of Node B 417 -- 10.2.5 Admission Control 417 -- 10.3 Impact of Noise Power 417 -- 10.3.1 The UL Noise Increase on Node B 418 -- 10.4 Delay of the Active DAS 418 -- 10.4.1 Solution 419 -- 10.5 Impact of External Noise Power 419 -- 10.5.1 To Calculate the Noise Power 419 -- 10.5.2 To Calculate the UL Attenuator 419 -- 10.5.3 Affect on Admission Control 421 -- 11 Tunnel Radio Planning 423 -- 11.1 The Typical Tunnel Solution 424 -- 11.1.1 The Penetration Loss into the Train Coach 425 -- 11.2 The Tunnel HO Zone 426 -- 11.2.1 Establishing the HO Zone Size 427 -- 11.2.2 The Link Loss and the Effect on the Handover Zone Design 428 -- 11.2.3 The Handover Challenge Between the Tunnel and Outside Network 429 -- 11.2.4 Possible Solutions for the Tunnel HO Problem to the Outside Network 430 -- 11.3 Covering Tunnels with Antennas 432 -- 11.4 Radiating Cable Solutions 434 -- 11.4.1 The Radiating Cable 435 -- 11.4.2 Calculating the Coverage Level 437 -- 11.4.3 Installation Challenges Using Radiating Cable 442 -- 11.5 Tunnel Solutions, Cascaded BDAs 444 -- 11.5.1 Cascaded Noise Build‐up 444 -- 11.5.2 Example of a Real‐life Cascaded BDA System 445 -- 11.6 Tunnel Solutions, T‐Systems 446 -- 11.6.1 T‐systems, Principle 447 -- 11.6.2 Example of a Real‐life T‐system with BDAs 447 -- 11.6.3 T‐systems with Antenna Distribution 449 -- 11.7 Handover Design inside Tunnels 450 -- 11.7.1 General Considerations 450. 11.7.2 Using Antennas for the HO Zone in Tunnels 451 -- 11.7.3 Using Parallel Radiating Cable for the HO Zone 453 -- 11.7.4 Using a Coupler for the HO Zone 454 -- 11.7.5 Avoid Common HO Zone Mistakes 455 -- 11.8 Redundancy in Tunnel Coverage Solutions 455 -- 11.8.1 Multiple Cell Redundancy in Tunnels 457 -- 11.9 Sector Strategy for Larger Metro Tunnel Projects 458 -- 11.9.1 Common Cell Plans for Large Metro Rail Systems 458 -- 11.9.2 Using Distributed Base Station in a Metro Tunnel Solution 461 -- 11.9.3 Using Optical Fibre DAS in a Metro Tunnel Solution 461 -- 11.10 RF Test Specification of Tunnel Projects 463 -- 11.11 Timing Issues in DAS for Tunnels 464 -- 11.11.1 Calculating the Total Delay of a Tunnel Solution 466 -- 11.11.2 Solving the Delay Problem in the Tunnel DAS 468 -- 11.11.3 High Speed Rail Tunnels 468 -- 11.11.4 Road Tunnels 469 -- 12 Covering Indoor Users From the Outdoor Network 471 -- 12.1 The Challenges of Reaching Indoor Users From the Macro Network 471 -- 12.1.1 Micro Cell (Small Cell) Deployment for IB Coverage 472 -- 12.1.2 Antenna Locations for Micro Cells 474 -- 12.1.3 Antenna Clearance for Micro Cells 475 -- 12.1.4 The Canyon Effect 476 -- 12.2 Micro Cell Capacity 476 -- 12.3 ODAS / Outdoor Distributed Antenna Systems 478 -- 12.3.1 The Base Station Hotel and Remote Units 479 -- 12.3.2 Simulcast and Flexible Capacity 480 -- 12.3.3 Different Sector Plans for Different Services 481 -- 12.4 Digital Distribution on DAS 481 -- 12.4.1 Advantages of ODDAS 482 -- 12.4.2 Remote Radio Heads 483 -- 12.4.3 Integrating the ODAS with the Macro Network 484 -- 12.5 High Speed Rail Solutions 487 -- 12.5.1 Calculating the Required Handover Zone Size for High Speed Rail 487 -- 12.5.2 Distributed Base Stations for High Speed Rail 488 -- 12.5.3 Covering High Speed Rail with Outdoor Distributed Antenna Systems 490 -- 12.5.4 Optimize the Location of the ODAS and Base Station Antennas for High Speed Rail 491 -- 12.5.5 The Doppler Effect 492 -- 13 Small Cells Indoors 495. 13.1 Femtocells 497 -- 13.1.1 Types of Femtocells 499 -- 13.1.2 The Pico/Femtocell Principle 499 -- 13.1.3 Typical Pico Cell Design 501 -- 13.1.4 Extending Pico Cell Coverage with Active DAS 503 -- 13.1.5 Combining Pico Cells into the Same DAS (only 2G) 505 -- 13.1.6 Cost Savings When Combining Capacity of 2G Pico Cells 505 -- 13.2 Heterogeneous Networks (HetNets) 507 -- 13.3 Implementing Small Cells Indoors 507 -- 13.3.1 Planning Considerations with Indoor Small Cells 510 -- 13.4 Planning Examples with Femtocells 511 -- 13.4.1 Small Office Space 512 -- 13.4.2 Medium‐sized Office Space 513 -- 13.4.3 Large Office/Meeting Space 513 -- 13.4.4 Final Word on Small Cells 516 -- 14 Application Examples 517 -- 14.1 Office Building Design 517 -- 14.1.1 Typical Features and Checklist for Office Buildings 518 -- 14.1.2 Small to Medium‐Sized Office Building 518 -- 14.1.3 Large Office Buildings 520 -- 14.1.4 High‐rises with Open Vertical Cavities 521 -- 14.2 Malls, Warehouses, and Large Structure Design 522 -- 14.2.1 Typical Features and Checklist for Malls, Warehouses and Large Structures 524 -- 14.2.2 The Different Areas of Shopping Malls 524 -- 14.3 Warehouses and Convention Centers 526 -- 14.3.1 Typical Features and Checklist for Warehouses and Convention Center DAS Deployments 528 -- 14.4 Campus Area Design 529 -- 14.4.1 Typical Features and Checklist for Campus DAS Deployments 529 -- 14.4.2 Base Station Hotels Are Ideal for Campus DAS 529 -- 14.5 Airport Design 530 -- 14.5.1 Typical Features and Checklist for Airports 530 -- 14.5.2 The Different Areas in the Airport 531 -- 14.6 Sports Arena Design 534 -- 14.6.1 Typical Features and Checklist for Stadiums and Arenas 535 -- 14.6.2 Arenas Require 3D Coverage and Capacity Planning 535 -- 14.6.3 Capacity Considerations in the Arena 535 -- 14.6.4 RF Design Considerations in the Sports Arena 540 -- 14.6.5 Antenna Locations in the Sports Arena 542 -- 14.6.6 Interference Across the Sports Arena 547 -- 14.6.7 Upgrading Old 2G designs, with 3G and 4G Overlay on a Sports Arena 549. 14.6.8 The HO Zone Challenge in the Arena 550 -- 14.6.9 The Ideal DAS Design for a Stadium 553 -- 14.7 Final Remark on Application Examples 554 -- 15 Planning Procedure, Installation, Commissioning, and Documentation 555 -- 15.1 The Design Phase 556 -- 15.1.1 Design Inputs 556 -- 15.1.2 Draft Design Process 558 -- 15.1.3 Site Visit / Survey 558 -- 15.1.4 Update of Draft Design 560 -- 15.2 The Implementation Phase 560 -- 15.2.1 Installation 560 -- 15.2.2 Post‐installation Verification 561 -- 15.2.3 DAS Test 561 -- 15.2.4 Commissioning 562 -- 15.3 The Verification Phase 564 -- 15.3.1 RF Verification 564 -- 15.3.2 Live Traffic Test 564 -- 15.4 Conclusion 565 -- References 567 -- Appendix 569 -- Reference Material 569 -- Index 581.
Restricted to subscribers or individual electronic text purchasers.
Mode of access: World Wide Web
9781118913611 1118913620
10.1002/9781118913611 doi
Wireless LANs.
Wireless communication systems.
Mobile communication systems.
Mobile communication systems.
Wireless communication systems.
Wireless LANs.
Electronic books.
TK5105.78
621.3845/6
Indoor radio planning : a practical guide for 2G, 3G and 4G / Morten Tolstrup. - Third edition. - 1 PDF (616 pages).
Includes bibliographical references and index.
Foreword by Professor Simon Saunders xvii -- Preface to the Third Edition xix -- 7 years! xix -- Certified DAS Planning Training xix -- More on 4G, Small Cells, Applications and RF Basics xx -- Useful Tool? xx -- Thanks! xx -- Preface to the Second Edition xxi -- This is Still Not a Book for Scientists! xxi -- The Practical Approach xxii -- Keep the Originals! xxii -- Preface to the First Edition xxiii -- This is Not a Book for Scientists xxiii -- The Practical Approach xxiii -- Acknowledgments xxv -- Second Edition xxv -- First Edition xxvi -- 1 Introduction 1 -- 2 Overview of Cellular Systems 5 -- 2.1 Mobile Telephony 5 -- 2.1.1 Cellular Systems 5 -- 2.1.2 Radio Transmission in General 8 -- 2.1.3 The Cellular Concept 8 -- 2.1.4 Digital Cellular Systems 9 -- 2.2 Introduction to GSM (2G) 10 -- 2.2.1 GSM (2G) 10 -- 2.2.2 2G/GSM Radio Features 11 -- 2.2.3 Mobility Management in GSM 16 -- 2.2.4 GSM Signaling 22 -- 2.2.5 GSM Network Architecture 25 -- 2.3 Universal Mobile Telecommunication System/3G 27 -- 2.3.1 The Most Important 3G/UMTS Radio Design Parameters 28 -- 2.3.2 The 3G/UMTS Radio Features 28 -- 2.3.3 3G/UMTS Noise Control 38 -- 2.3.4 3G/UMTS Handovers 42 -- 2.3.5 UMTS/3G Power Control 46 -- 2.3.6 UMTS and Multipath Propagation 49 -- 2.3.7 UMTS Signaling 52 -- 2.3.8 The UMTS Network Elements 55 -- 2.4 Introduction to HSPA 57 -- 2.4.1 Introduction 57 -- 2.4.2 Wi‐Fi 58 -- 2.4.3 Introduction to HSDPA 60 -- 2.4.4 Indoor HSPA Coverage 61 -- 2.4.5 Indoor HSPA Planning for Maximum Performance 63 -- 2.4.6 HSDPA Coverage from the Macro Network 64 -- 2.4.7 Passive DAS and HSPA 66 -- 2.4.8 Short Introduction to HSPA+ 68 -- 2.4.9 Conclusion 68 -- 2.5 Modulation 69 -- 2.5.1 Shannon's Formula 69 -- 2.5.2 BPSK 70 -- 2.5.3 QPSK / Quadrature Phase Shift Keying 70 -- 2.5.4 Higher Order Modulation 16‐64QAM 70 -- 2.5.5 EVM Error Vector Magnitude 72 -- 2.5.6 Adaptive Modulation, Planning for Highest Data Speed 72 -- 2.6 Advanced Antenna Systems for 3G/4G 74 -- 2.6.1 SISO/MIMO Systems 75. 2.6.2 SISO, Single Input Single Output 75 -- 2.6.3 SIMO, Single Input Multiple Output 76 -- 2.6.4 MISO, Multiple Inputs Single Output 76 -- 2.6.5 MIMO, Multiple Inputs Multiple Outputs 77 -- 2.6.6 Planning for Optimum Data Speeds Using MIMO 79 -- 2.7 Short Introduction to 4G/LTE 80 -- 2.7.1 Motivation behind LTE and E‐UTRAN 80 -- 2.7.2 Key Features of LTE E‐UTRAN 82 -- 2.7.3 System Architecture Evolution / SAE 84 -- 2.7.4 EPS / Evolved Packet System 84 -- 2.7.5 Evolved Packet Core Network / EPC 85 -- 2.7.6 LTE Reference Points/Interfaces 87 -- 2.7.7 The LTE RF Channel Bandwidth 87 -- 2.7.8 OFDM / Orthogonal Frequency Division Multiplexing 88 -- 2.7.9 OFDMA / Orthogonal Frequency Division Multiple Access 89 -- 2.7.10 SC‐FDMA / Single Carrier Frequency Division Multiple Access 90 -- 2.7.11 LTE Slot Structure 91 -- 2.7.12 User Scheduling 92 -- 2.7.13 Downlink Reference Signals 92 -- 2.7.14 The 4G/LTE Channel 92 -- 2.7.15 LTE Communication and Control Channels 93 -- 2.7.16 Radio Resource Management in LTE 96 -- 3 Indoor Radio Planning 111 -- 3.1 Why is In‐building Coverage Important? 111 -- 3.1.1 Commercial and Technical Evaluation 112 -- 3.1.2 The Main Part of the Mobile Traffic is Indoors 112 -- 3.1.3 Some 70 / 80% of Mobile Traffic is Inside Buildings 112 -- 3.1.4 Indoor Solutions Can Make a Great Business Case 112 -- 3.1.5 Business Evaluation 113 -- 3.1.6 Coverage Levels/Cost Level 113 -- 3.1.7 Evaluate the Value of the Proposed Solution 113 -- 3.2 Indoor Coverage from the Macro Layer 114 -- 3.2.1 More Revenue with Indoor Solutions 114 -- 3.2.2 The Problem Reaching Indoor Mobile Users 115 -- 3.3 The Indoor 3G/HSPA Challenge 117 -- 3.3.1 3G Orthogonality Degradation 117 -- 3.3.2 Power Load per User 120 -- 3.3.3 Interference Control in the Building 120 -- 3.3.4 The Soft Handover Load 120 -- 3.3.5 3G/HSPA Indoor Coverage Conclusion 121 -- 3.4 Common 3G/4G Rollout Mistakes 122 -- 3.4.1 The Macro Mistake 122 -- 3.4.2 Do Not Apply 2G Strategies 123 -- 3.4.3 The Correct Way to Plan 3G/4G Indoor Coverage 123. 3.5 The Basics of Indoor RF Planning 124 -- 3.5.1 Isolation is the Key 124 -- 3.5.2 Tinted Windows Will Help Isolation 124 -- 3.5.3 The 'High‐rise Problem' 125 -- 3.5.4 Radio Service Quality 128 -- 3.5.5 Indoor RF Design Levels 129 -- 3.5.6 The Zone Planning Concept 129 -- 3.6 RF Metrics Basics 131 -- 3.6.1 Gain 132 -- 3.6.2 Gain Factor 132 -- 3.6.3 Decibel (dB) 133 -- 3.6.4 dBm 135 -- 3.6.5 Equivalent Isotropic Radiated Power (EiRP) 136 -- 3.6.6 Delays in the DAS 136 -- 3.6.7 Offset of the Cell Size 139 -- 4 Distributed Antenna Systems 141 -- 4.1 What Type of Distributed Antenna System is Best? 141 -- 4.1.1 Passive or Active DAS 142 -- 4.1.2 Learn to Use all the Indoor Tools 142 -- 4.1.3 Combine the Tools 143 -- 4.2 Passive Components 143 -- 4.2.1 General 143 -- 4.2.2 Coax Cable 143 -- 4.2.3 Splitters 144 -- 4.2.4 Taps/Uneven Splitters 145 -- 4.2.5 Attenuators 146 -- 4.2.6 Dummy Loads or Terminators 147 -- 4.2.7 Circulators 147 -- 4.2.8 A 3 dB Coupler (90�A Hybrid) 148 -- 4.2.9 Power Load on Passive Components 150 -- 4.2.10 Filters 151 -- 4.3 The Passive DAS 151 -- 4.3.1 Planning the Passive DAS 151 -- 4.3.2 Main Points About Passive DAS 153 -- 4.3.3 Applications for Passive DAS 154 -- 4.4 Active DAS 154 -- 4.4.1 Easy to Plan 155 -- 4.4.2 Pure Active DAS for Large Buildings 155 -- 4.4.3 Pure Active DAS for Small to Medium‐size Buildings 159 -- 4.4.4 Active Fiber DAS 160 -- 4.5 Hybrid Active DAS Solutions 163 -- 4.5.1 Data Performance on the Uplink 163 -- 4.5.2 DL Antenna Power 163 -- 4.5.3 Antenna Supervision 164 -- 4.5.4 Installation Challenges 164 -- 4.5.5 The Elements of the Hybrid Active DAS 164 -- 4.6 Other Hybrid DAS Solutions 166 -- 4.6.1 In‐line BDA Solution 166 -- 4.6.2 Combining Passive and Active Indoor DAS 167 -- 4.6.3 Combining Indoor and Outdoor Coverage 168 -- 4.7 Indoor DAS for MIMO Applications 171 -- 4.7.1 Calculating the Ideal MIMO Antenna Distance Separation for Indoor DAS 171 -- 4.7.2 Make Both MIMO Antennas 'Visible' for the Users 173 -- 4.7.3 Passive DAS and MIMO 178. 4.7.4 Pure Active DAS for MIMO 179 -- 4.7.5 Hybrid DAS and MIMO 181 -- 4.7.6 Upgrading Existing DAS to MIMO 181 -- 4.8 Using Repeaters for Indoor DAS Coverage 182 -- 4.8.1 Basic Repeater Terms 184 -- 4.8.2 Repeater Types 189 -- 4.8.3 Repeater Considerations in General 192 -- 4.9 Repeaters for Rail Solutions 195 -- 4.9.1 Repeater Principle on a Train 195 -- 4.9.2 Onboard DAS Solutions 197 -- 4.9.3 Repeater Features for Mobile Rail Deployment 197 -- 4.9.4 Practical Concerns with Repeaters on Rail 199 -- 4.10 Active DAS Data 200 -- 4.10.1 Gain and Delay 201 -- 4.10.2 Power Per Carrier 202 -- 4.10.3 Bandwidth, Ripple 202 -- 4.10.4 The 1 dB Compression Point 203 -- 4.10.5 IP3 Third‐order Intercept Point 204 -- 4.10.6 Harmonic Distortion, Inter‐modulation 205 -- 4.10.7 Spurious Emissions 205 -- 4.10.8 Noise Figure 205 -- 4.10.9 MTBF 206 -- 4.10.10 Dynamic Range and Near‐far Effect 207 -- 4.11 Electromagnetic Radiation, EMR 211 -- 4.11.1 ICNIRP EMR Guidelines 211 -- 4.11.2 Mobiles are the Strongest Source of EMR 212 -- 4.11.3 Indoor DAS will Provide Lower EMR Levels 213 -- 4.12 Conclusion 214 -- 5 Designing Indoor DAS Solutions 215 -- 5.1 The Indoor Planning Procedure 215 -- 5.1.1 Indoor Planning Process Flow 215 -- 5.1.2 The RF Planning Part of the Process 217 -- 5.1.3 The Site Survey 218 -- 5.1.4 Time Frame for Implementing Indoor DAS 219 -- 5.1.5 Post Implementation 219 -- 5.2 The RF Design Process 220 -- 5.2.1 The Role of the RF Planner 220 -- 5.2.2 RF Measurements 220 -- 5.2.3 The Initial RF Measurements 221 -- 5.2.4 Measurements of Existing Coverage Level 222 -- 5.2.5 RF Survey Measurement 223 -- 5.2.6 Planning the Measurements 224 -- 5.2.7 Post Implementation Measurements 226 -- 5.2.8 Free Space Loss 227 -- 5.2.9 The One Meter Test 227 -- 5.3 Designing the Optimum Indoor Solution 229 -- 5.3.1 Adapt the Design to Reality 229 -- 5.3.2 Learn from the Mistakes of Others 229 -- 5.3.3 Common Mistakes When Designing Indoor Solutions 232 -- 5.3.4 Planning the Antenna Locations 233. 5.3.5 The 'Corridor Effect' 235 -- 5.3.6 Fire Cells Inside the Building 236 -- 5.3.7 Indoor Antenna Performance 236 -- 5.3.8 The 'Corner Office Problem' 243 -- 5.3.9 Interleaving Antennas In‐between Floors 244 -- 5.3.10 Planning for Full Indoor Coverage 247 -- 5.3.11 The Cost of Indoor Design Levels 249 -- 5.4 Indoor Design Strategy 250 -- 5.4.1 Hotspot Planning Inside Buildings 250 -- 5.4.2 Special Design Considerations 255 -- 5.4.3 The Design Flow 256 -- 5.4.4 Placing the Indoor Antennas 256 -- 5.5 Handover Considerations Inside Buildings 257 -- 5.5.1 Indoor 2G Handover Planning 258 -- 5.5.2 Indoor 3G Handover Planning 259 -- 5.5.3 Handover Zone Size 261 -- 5.6 Elevator Coverage 262 -- 5.6.1 Elevator Installation Challenges 262 -- 5.6.2 The Most Common Coverage Elevator Solution 262 -- 5.6.3 Antenna Inside the Shaft 262 -- 5.6.4 Repeater in the Lift‐car 264 -- 5.6.5 DAS Antenna in the Lift‐car 264 -- 5.6.6 Passive Repeaters in Elevators 265 -- 5.6.7 Real‐life Example of a Passive Repeater in an Elevator 266 -- 5.6.8 Control the Elevator HO Zone 267 -- 5.6.9 Elevator HO Zone Size 267 -- 5.6.10 Challenges with Elevator Repeaters for Large Shafts 268 -- 5.7 Multioperator Systems 276 -- 5.7.1 Multioperator DAS Solutions Compatibility 276 -- 5.7.2 The Combiner System 283 -- 5.7.3 Inter‐modulation Distortion 284 -- 5.7.4 How to Minimize PIM 285 -- 5.7.5 IMD Products 286 -- 5.8 Co‐existence Issues for 2G/3G 287 -- 5.8.1 Spurious Emissions 287 -- 5.8.2 Combined DAS for 2G-900 and 3G 288 -- 5.8.3 Combined DAS for 2G-1800 and 3G 288 -- 5.9 Co‐existence Issues for 3G/3G 289 -- 5.9.1 Adjacent Channel Interference Power Ratio 290 -- 5.9.2 The ACIR Problem with Indoor DAS 291 -- 5.9.3 Solving the ACIR Problem Inside Buildings 292 -- 5.10 Multioperator Requirements 293 -- 5.10.1 Multioperator Agreement 294 -- 5.10.2 Parties Involved in the Indoor Project 294 -- 5.10.3 The Most Important Aspects to Cover in the MOA 294 -- 6 Traffic Dimensioning 297 -- 6.1 Erlang, the Traffic Measurement 297. 6.1.1 What is One Erlang? 298 -- 6.1.2 Call Blocking, Grade of Service 299 -- 6.1.3 The Erlang B Table 299 -- 6.1.4 User Types, User Traffic Profile 301 -- 6.1.5 Save on Cost, Use the Erlang Table 302 -- 6.1.6 When Not to Use Erlang 302 -- 6.1.7 2G Radio Channels and Erlang 303 -- 6.1.8 3G Channels and Erlang 303 -- 6.1.9 Trunking Gain, Resource Sharing 304 -- 6.1.10 Cell Configuration in Indoor Projects 305 -- 6.1.11 Busy Hour and Return on Investment Calculations 307 -- 6.1.12 Base Station Hotels 313 -- 6.2 Data Capacity 315 -- 6.2.1 Application‐driven Data Load 316 -- 6.2.2 Data offload to Wi‐Fi and Small Cells 319 -- 6.2.3 Future‐proof Your DAS to Handle More Data Load 319 -- 6.2.4 Event‐driven Data Load 323 -- 6.2.5 Calculating the Data Load 323 -- 7 Noise 327 -- 7.1 Noise Fundamentals 327 -- 7.1.1 Thermal Noise 328 -- 7.1.2 Noise Factor 329 -- 7.1.3 Noise Figure 329 -- 7.1.4 Noise Floor 329 -- 7.1.5 The Receiver Sensitivity 330 -- 7.1.6 Noise Figure of Amplifiers 331 -- 7.1.7 Noise Factor of Coax Cables 332 -- 7.2 Cascaded Noise 334 -- 7.2.1 The Friis Formula 334 -- 7.2.2 Amplifier After the Cable Loss 335 -- 7.2.3 Amplifier Prior to the Cable Loss 337 -- 7.2.4 Problems with Passive Cables and Passive DAS 339 -- 7.3 Noise Power 341 -- 7.3.1 Calculating the Noise Power of a System 342 -- 7.4 Noise Power from Parallel Systems 346 -- 7.4.1 Calculating Noise Power from Parallel Sources 346 -- 7.5 Noise Control 347 -- 7.5.1 Noise Load on Base Stations 347 -- 7.5.2 Noise and 2G Base Stations 348 -- 7.5.3 Noise and 3G Base Stations 348 -- 7.6 Updating a Passive DAS from 2G to 3G/4G 349 -- 7.6.1 The 3G/4G Challenge 349 -- 7.6.2 The 3G Problem 350 -- 7.6.3 Solution 1, In‐line BDA 351 -- 7.6.4 Solution 2: Active DAS Overlay 355 -- 7.6.5 Conclusions on Noise and Noise Control 359 -- 8 The Link Budget 361 -- 8.1 The Components and Calculations of the RF Link 362 -- 8.1.1 The Maximum Allowable Path Loss 362 -- 8.1.2 The Components in the Link Budget 362 -- 8.1.3 Link Budgets for Indoor Systems 374. 8.1.4 Passive DAS Link Budget 376 -- 8.1.5 Active DAS Link Budget 376 -- 8.1.6 The Free Space Loss 377 -- 8.1.7 The Modified Indoor Model 377 -- 8.1.8 The PLS Model 379 -- 8.1.9 Calculating the Antenna Service Radius 380 -- 8.2 4G Link Budget 382 -- 8.2.1 4G Design Levels 383 -- 8.2.2 RSRP, Reference Symbol Transmit Power 384 -- 8.2.3 4G RSSI Signal Power 385 -- 8.2.4 4G Coverage vs. Capacity 385 -- 8.2.5 4G DL RS Link Budget Example 386 -- 9 Tools for Indoor Radio Planning 389 -- 9.1 Live and Learn 389 -- 9.2 Diagram Tools 390 -- 9.2.1 Simple or Advanced? 390 -- 9.3 Radio Survey Tools 391 -- 9.3.1 Use Only Calibrated Equipment 391 -- 9.4 The Simple Tools and Tips 391 -- 9.4.1 Use a Digital Camera 391 -- 9.4.2 Use the World Wide Web 392 -- 9.4.3 Traffic Calculations 392 -- 9.5 Tools for Link Budget Calculations 392 -- 9.6 Tools for Indoor Predictions 392 -- 9.6.1 Spreadsheets Can Do Most of the Job 394 -- 9.6.2 The More Advanced RF Prediction Models 394 -- 9.7 The Advanced Toolkit (iBwave Unity, Design, and Mobile from iBwave.com) 395 -- 9.7.1 Save Time, Keep Costs and Mistakes to a Minimum 396 -- 9.7.2 Collaboration, Visibility, and Revision Controls 396 -- 9.7.3 Multisystem or Multioperator Small Cells, DAS, and Wi‐Fi 397 -- 9.7.4 The Site Survey Tool 397 -- 9.7.5 The Mobile Planning Tool 397 -- 9.7.6 Import Floor Plans 397 -- 9.7.7 Schematic Diagram 398 -- 9.7.8 Floor Plan Diagram 401 -- 9.7.9 Site Documentation 401 -- 9.7.10 Error Detection 401 -- 9.7.11 Component Database 402 -- 9.7.12 RF Propagation 403 -- 9.7.13 RF Optimization 403 -- 9.7.14 Complex Environments 404 -- 9.7.15 Importing an RF Survey 404 -- 9.7.16 Equipment List and Project Cost Report 405 -- 9.7.17 RF and Installation Report 405 -- 9.7.18 Fully Integrated 406 -- 9.7.19 Outputs from the Tool 406 -- 9.7.20 Team Collaboration 407 -- 9.7.21 Make Sure to Learn the Basics 408 -- 9.8 Tools for DAS Verification 408 -- 9.8.1 3G Example Measurement 409 -- 9.8.2 4G Example Measurement 412 -- 9.8.3 Final Word on Tools 412. 10 Optimizing the Radio Resource Management Parameters on Node B When Interfacing to an Active DAS, BDA, LNA or TMA 413 -- 10.1 Introduction 413 -- 10.1.1 3G Radio Performance is All About Noise and Power Control 413 -- 10.1.2 3G RF Parameter Reference is Different from 2G 414 -- 10.1.3 Adjust the Parameters 414 -- 10.1.4 How to Adjust this in the RAN 415 -- 10.1.5 Switch Off the LNA in Node B when Using Active DAS 415 -- 10.2 Impact of DL Power Offset 415 -- 10.2.1 Access Burst 415 -- 10.2.2 Power Offset Between Node B and the Active DAS 416 -- 10.2.3 Solution 417 -- 10.2.4 Impact on the UL of Node B 417 -- 10.2.5 Admission Control 417 -- 10.3 Impact of Noise Power 417 -- 10.3.1 The UL Noise Increase on Node B 418 -- 10.4 Delay of the Active DAS 418 -- 10.4.1 Solution 419 -- 10.5 Impact of External Noise Power 419 -- 10.5.1 To Calculate the Noise Power 419 -- 10.5.2 To Calculate the UL Attenuator 419 -- 10.5.3 Affect on Admission Control 421 -- 11 Tunnel Radio Planning 423 -- 11.1 The Typical Tunnel Solution 424 -- 11.1.1 The Penetration Loss into the Train Coach 425 -- 11.2 The Tunnel HO Zone 426 -- 11.2.1 Establishing the HO Zone Size 427 -- 11.2.2 The Link Loss and the Effect on the Handover Zone Design 428 -- 11.2.3 The Handover Challenge Between the Tunnel and Outside Network 429 -- 11.2.4 Possible Solutions for the Tunnel HO Problem to the Outside Network 430 -- 11.3 Covering Tunnels with Antennas 432 -- 11.4 Radiating Cable Solutions 434 -- 11.4.1 The Radiating Cable 435 -- 11.4.2 Calculating the Coverage Level 437 -- 11.4.3 Installation Challenges Using Radiating Cable 442 -- 11.5 Tunnel Solutions, Cascaded BDAs 444 -- 11.5.1 Cascaded Noise Build‐up 444 -- 11.5.2 Example of a Real‐life Cascaded BDA System 445 -- 11.6 Tunnel Solutions, T‐Systems 446 -- 11.6.1 T‐systems, Principle 447 -- 11.6.2 Example of a Real‐life T‐system with BDAs 447 -- 11.6.3 T‐systems with Antenna Distribution 449 -- 11.7 Handover Design inside Tunnels 450 -- 11.7.1 General Considerations 450. 11.7.2 Using Antennas for the HO Zone in Tunnels 451 -- 11.7.3 Using Parallel Radiating Cable for the HO Zone 453 -- 11.7.4 Using a Coupler for the HO Zone 454 -- 11.7.5 Avoid Common HO Zone Mistakes 455 -- 11.8 Redundancy in Tunnel Coverage Solutions 455 -- 11.8.1 Multiple Cell Redundancy in Tunnels 457 -- 11.9 Sector Strategy for Larger Metro Tunnel Projects 458 -- 11.9.1 Common Cell Plans for Large Metro Rail Systems 458 -- 11.9.2 Using Distributed Base Station in a Metro Tunnel Solution 461 -- 11.9.3 Using Optical Fibre DAS in a Metro Tunnel Solution 461 -- 11.10 RF Test Specification of Tunnel Projects 463 -- 11.11 Timing Issues in DAS for Tunnels 464 -- 11.11.1 Calculating the Total Delay of a Tunnel Solution 466 -- 11.11.2 Solving the Delay Problem in the Tunnel DAS 468 -- 11.11.3 High Speed Rail Tunnels 468 -- 11.11.4 Road Tunnels 469 -- 12 Covering Indoor Users From the Outdoor Network 471 -- 12.1 The Challenges of Reaching Indoor Users From the Macro Network 471 -- 12.1.1 Micro Cell (Small Cell) Deployment for IB Coverage 472 -- 12.1.2 Antenna Locations for Micro Cells 474 -- 12.1.3 Antenna Clearance for Micro Cells 475 -- 12.1.4 The Canyon Effect 476 -- 12.2 Micro Cell Capacity 476 -- 12.3 ODAS / Outdoor Distributed Antenna Systems 478 -- 12.3.1 The Base Station Hotel and Remote Units 479 -- 12.3.2 Simulcast and Flexible Capacity 480 -- 12.3.3 Different Sector Plans for Different Services 481 -- 12.4 Digital Distribution on DAS 481 -- 12.4.1 Advantages of ODDAS 482 -- 12.4.2 Remote Radio Heads 483 -- 12.4.3 Integrating the ODAS with the Macro Network 484 -- 12.5 High Speed Rail Solutions 487 -- 12.5.1 Calculating the Required Handover Zone Size for High Speed Rail 487 -- 12.5.2 Distributed Base Stations for High Speed Rail 488 -- 12.5.3 Covering High Speed Rail with Outdoor Distributed Antenna Systems 490 -- 12.5.4 Optimize the Location of the ODAS and Base Station Antennas for High Speed Rail 491 -- 12.5.5 The Doppler Effect 492 -- 13 Small Cells Indoors 495. 13.1 Femtocells 497 -- 13.1.1 Types of Femtocells 499 -- 13.1.2 The Pico/Femtocell Principle 499 -- 13.1.3 Typical Pico Cell Design 501 -- 13.1.4 Extending Pico Cell Coverage with Active DAS 503 -- 13.1.5 Combining Pico Cells into the Same DAS (only 2G) 505 -- 13.1.6 Cost Savings When Combining Capacity of 2G Pico Cells 505 -- 13.2 Heterogeneous Networks (HetNets) 507 -- 13.3 Implementing Small Cells Indoors 507 -- 13.3.1 Planning Considerations with Indoor Small Cells 510 -- 13.4 Planning Examples with Femtocells 511 -- 13.4.1 Small Office Space 512 -- 13.4.2 Medium‐sized Office Space 513 -- 13.4.3 Large Office/Meeting Space 513 -- 13.4.4 Final Word on Small Cells 516 -- 14 Application Examples 517 -- 14.1 Office Building Design 517 -- 14.1.1 Typical Features and Checklist for Office Buildings 518 -- 14.1.2 Small to Medium‐Sized Office Building 518 -- 14.1.3 Large Office Buildings 520 -- 14.1.4 High‐rises with Open Vertical Cavities 521 -- 14.2 Malls, Warehouses, and Large Structure Design 522 -- 14.2.1 Typical Features and Checklist for Malls, Warehouses and Large Structures 524 -- 14.2.2 The Different Areas of Shopping Malls 524 -- 14.3 Warehouses and Convention Centers 526 -- 14.3.1 Typical Features and Checklist for Warehouses and Convention Center DAS Deployments 528 -- 14.4 Campus Area Design 529 -- 14.4.1 Typical Features and Checklist for Campus DAS Deployments 529 -- 14.4.2 Base Station Hotels Are Ideal for Campus DAS 529 -- 14.5 Airport Design 530 -- 14.5.1 Typical Features and Checklist for Airports 530 -- 14.5.2 The Different Areas in the Airport 531 -- 14.6 Sports Arena Design 534 -- 14.6.1 Typical Features and Checklist for Stadiums and Arenas 535 -- 14.6.2 Arenas Require 3D Coverage and Capacity Planning 535 -- 14.6.3 Capacity Considerations in the Arena 535 -- 14.6.4 RF Design Considerations in the Sports Arena 540 -- 14.6.5 Antenna Locations in the Sports Arena 542 -- 14.6.6 Interference Across the Sports Arena 547 -- 14.6.7 Upgrading Old 2G designs, with 3G and 4G Overlay on a Sports Arena 549. 14.6.8 The HO Zone Challenge in the Arena 550 -- 14.6.9 The Ideal DAS Design for a Stadium 553 -- 14.7 Final Remark on Application Examples 554 -- 15 Planning Procedure, Installation, Commissioning, and Documentation 555 -- 15.1 The Design Phase 556 -- 15.1.1 Design Inputs 556 -- 15.1.2 Draft Design Process 558 -- 15.1.3 Site Visit / Survey 558 -- 15.1.4 Update of Draft Design 560 -- 15.2 The Implementation Phase 560 -- 15.2.1 Installation 560 -- 15.2.2 Post‐installation Verification 561 -- 15.2.3 DAS Test 561 -- 15.2.4 Commissioning 562 -- 15.3 The Verification Phase 564 -- 15.3.1 RF Verification 564 -- 15.3.2 Live Traffic Test 564 -- 15.4 Conclusion 565 -- References 567 -- Appendix 569 -- Reference Material 569 -- Index 581.
Restricted to subscribers or individual electronic text purchasers.
Mode of access: World Wide Web
9781118913611 1118913620
10.1002/9781118913611 doi
Wireless LANs.
Wireless communication systems.
Mobile communication systems.
Mobile communication systems.
Wireless communication systems.
Wireless LANs.
Electronic books.
TK5105.78
621.3845/6