Handbook of functionalized nanomaterials for industrial applications / edited by Chaudhery Mustansar Hussain. - 1 online resource (xxvi, 1038 pages) : illustrations

Front Cover -- Handbook of Functionalized Nanomaterials for Industrial Applications -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 Different kinds of functionalized nanomaterial for industrial use nanomaterials -- 1 Functionalization of nanomaterials for industrial applications: recent and future perspectives -- 1.1 Introduction -- 1.2 Nanotrends in industrial development -- 1.3 Potential of nanomaterials -- 1.4 What are functionalized nanomaterials? -- 1.5 The use of functionalized nanomaterials in industry -- 1.5.1 Food -- 1.5.2 Energy and environmental sectors -- 1.5.3 Other applications of engineered nanomaterials -- 1.6 Current research on nanomaterials -- 1.7 Recent scientific research in the field of functionalized nanomaterials -- 1.8 The scientific vision of energy and environmental sustainability -- 1.9 Recent research in environmental protection and industrial ecology -- 1.10 Integrated water resource management and human factor engineering -- 1.11 Groundwater remediation and nanotechnology -- 1.12 Future research trends in nanotechnology and nanomaterials -- 1.13 Conclusion and future perspectives -- References -- Further reading -- 2 Mixed-matrix membranes incorporated with functionalized nanomaterials for water applications -- 2.1 Introduction -- 2.2 Mixed-matrix membranes incorporated with carbon-based nanomaterials -- 2.2.1 Carbon nanotubes -- 2.2.2 Graphene oxide -- 2.3 Mixed-matrix membranes incorporated with titania-based nanomaterials -- 2.4 Mixed-matrix membranes incorporated with other nanomaterials -- 2.5 Adsorptive mixed-matrix membranes for heavy-metal removal -- 2.6 Conclusion and future remarks -- References -- 2 Functionalized nanomaterial for catalysis industry -- 3 Photocatalytic oxygen evolution reaction for energy conversion and storage of functional nanomaterials -- 3.1 Introduction. 3.1.1 Structural investigation of CeO2/CdO nanostructures -- 3.1.2 Fourier transform infrared spectroscopy -- 3.1.3 Field emission scanning electron microscopy studies -- 3.1.4 High-resolution transmission electron microscopy studies -- 3.1.5 Diffuse reflectance spectroscopy studies -- 3.1.6 Micro-Raman spectroscopy -- 3.1.7 Photoluminescence spectra -- 3.1.8 X-ray photoelectron spectroscopy studies -- 3.1.9 Thermogravimetric analysis -- 3.1.10 Photocatalytic activity -- 3.1.11 Degradation of Rhodamine-B using CeO2/CdO heterogeneous catalyst -- 3.1.12 Photocatalytic degradation of Rhodamine-B dye using CeO2/CdO heterogeneous catalyst (Ce2/Cd1 ratio) -- 3.1.13 Visible light-induced decomposition of Rhodamine-B using CeO2/CdO heterogeneous catalyst (Ce2/Cd1) -- 3.1.14 Effect of pH on the photodegradation of Rhodamine-B dye -- 3.1.15 Effect of irradiation time on the photodegradation of Rhodamine-B dye -- 3.1.16 Effect of catalyst dose on the photodegradation of Rhodamine-B dye -- 3.1.17 Effect of initial concentration of Rhodamine-B dye -- 3.1.18 Removal of Rhodamine-B from urban wastewater -- 3.1.19 Mechanism of photocatalysis -- 3.2 Conclusion -- References -- 4 Functionalized metal-based nanoelectrocatalysts for water splitting -- 4.1 Introduction -- 4.1.1 Fundamentals of water electrolysis -- 4.1.2 Functionalized nanomaterials as electrocatalysts -- 4.1.3 HER process -- 4.1.4 OER process -- 4.2 Functionalized nanoelectrocatalysts for HER -- 4.2.1 Pt-based HER catalysts -- 4.2.2 Nonnoble metal carbides and oxides -- 4.2.3 Nonnoble metal dichalcagonides and phosphides -- 4.2.4 Other transition metal nanostructures -- 4.3 OER catalysts -- 4.3.1 Noble-metal nanocatalysts -- 4.3.2 Nonnoble metal nanocatalysts -- 4.4 Bifunctional electrocatalysts -- 4.4.1 Noble metal nanocatalysts -- 4.4.2 Nonnoble metal nanocatalysts. 4.4.3 Intermetallic nonnoble nanocatalysts -- 4.5 Summary -- References -- 5 Functionalized nanographene for catalysis -- 5.1 Nanographene: an introduction -- 5.1.1 Interest in nanographene -- 5.1.2 Chemistry of nanographene -- 5.1.3 Synthetic methods -- 5.1.4 Characterization tools -- 5.1.5 Applications -- 5.2 Functionalization of nanographene -- 5.3 Catalytic properties and applications of functionalized nanographene -- 5.3.1 Catalytic properties -- 5.3.2 Catalytic applications -- 5.4 Industrial, environmental, and health issues of nanographene -- 5.4.1 Industrial issues -- 5.4.2 Toxicity -- 5.4.3 Biocompatibility -- 5.4.4 Sustainability -- 5.5 Conclusions and future aspects -- References -- 3 Functionalized nanomaterials for biomedical, pharmaceutical, agriculture, and agri-food industry Section Function ... -- 6 Delivery of bioactives using biocompatible nanodelivery technologies -- 6.1 Introduction -- 6.2 Fabrication methods of biopolymer-based nanodelivery systems -- 6.2.1 Nanoprecipitation/desolvation -- 6.2.1.1 Nanoprecipitation/desolvation of proteins -- 6.2.1.2 Nanoprecipitation/desolvation of carbohydrates -- 6.2.2 Coacervation -- 6.2.3 Layer-by-layer deposition -- 6.2.3.1 Spherical particle formation through layer-by-layer deposition -- 6.2.3.2 Nanotube formation through layer-by-layer deposition -- 6.3 Conclusions -- References -- 7 Biopolymer-based nanomaterials for food, nutrition, and healthcare sectors: an overview on their properties, functions, a ... -- 7.1 Introduction -- 7.2 Sources, structure, and characteristics -- 7.2.1 Properties and functions of biopolymers -- 7.2.2 Properties and functions of nanomaterials -- 7.2.3 Safety and toxicity of biopolymer-based nanomaterials -- 7.3 Preparation of biopolymer-based nanomaterials -- 7.4 Applications of biopolymer-based nanomaterials -- 7.4.1 Cellulose -- 7.4.2 Starch. 7.4.3 Chitosan and zein -- 7.5 Conclusions -- 7.6 Future perspectives -- Funding -- Conflict of interests -- References -- Further reading -- 8 Surface functionalization of PLGA nanoparticles for drug delivery -- 8.1 Introduction: background and driving forces -- 8.1.1 Nanoparticles as novel drug delivery systems -- 8.1.2 Poly(D, L-lactide-co-glycolide) nanoparticles -- 8.1.3 Structure and properties of PLGA polymers -- 8.1.4 PLGA nanoparticles production techniques -- 8.2 Active targeting by surface functionalization of PLGA nanoparticles -- 8.3 Noncovalent functionalization of PLGA nanoparticles -- 8.3.1 PEGylated PLGA nanoparticle -- 8.3.2 Surfactant PLGA nanoparticles -- 8.3.3 Polyelectrolyte-PLGA nanoparticles -- 8.3.4 Cell target ligands coupled on the surface of PLGA nanoparticles -- 8.3.5 Antibody-directed PLGA nanoparticles -- 8.4 Nucleic acid-functionalized PLGA -- 8.5 Concluding remarks -- Acknowledgements -- References -- 9 Biomedical-related applications of functionalized nanomaterials -- 9.1 Introduction -- 9.2 Functionalized nanoparticles in the biopharmaceutical sector -- 9.3 Types and synthesis procedures of functionalized nanomaterials -- 9.3.1 Metal-based nanoparticles -- 9.3.2 Silica nanoparticles -- 9.3.3 Carbon nanomaterials -- 9.4 Immobilization of functionalized nanomaterials in membranes -- 9.5 Functionalized nanoparticles as drug delivery systems -- 9.6 Conclusions and future trends -- Acknowledgments -- References -- 10 Functionalized nanomaterials for biomedical and agriculture industries -- 10.1 Introduction -- 10.2 Strategies for functionalization of nanomaterials -- 10.3 Functionalized nanomaterials for biomedical and pharmaceutical applications -- 10.3.1 Functionalized carbon-based materials for biomedical and pharmaceutical applications -- 10.3.2 Functionalized metal nanoparticles for biomedical applications. 10.3.3 Functionalized magnetic nanoparticles for biomedical applications -- 10.3.4 Functionalized polymer-based nanomaterials for biomedical and pharmaceutical applications -- 10.4 Application of functionalized nanomaterials in agriculture and agroindustry -- 10.4.1 Impact of functionalized nanomaterials in agriculture -- 10.4.2 Impact of surface modified, labeled, and conjugated nanomaterials in agriculture -- 10.5 Conclusion -- References -- Further reading -- 4 Functionalized Nanomaterials for Electronics, Electrical and Energy Industry -- 11 Functionalized nanomaterials for electronics and electrical and energy industries -- 11.1 Introduction -- 11.1.1 Classification of nanomaterials based on dimension -- 11.1.1.1 Three-dimensional nanostructures -- 11.1.1.2 Two-dimensional nanostructures -- 11.1.1.3 One-dimensional nanostructures -- 11.1.1.4 Zero-dimensional nanostructures -- 11.1.2 Classification of nanomaterials according to chemical composition -- 11.1.3 Properties of nanomaterials -- 11.1.3.1 Thermal property -- 11.1.3.2 Structural property -- 11.1.3.3 Optical property -- 11.1.3.4 Electronic property -- 11.1.3.5 Magnetic property -- 11.1.3.6 Mechanical property -- 11.1.4 Functionalization of nanomaterials -- 11.1.4.1 Chemical methods -- 11.1.4.2 Ligand exchange process -- 11.1.4.3 Grafting of synthetic polymers -- 11.1.4.4 Miscellaneous methods -- 11.2 Industrial applications -- 11.2.1 Applications of functionalized nanomaterials in the electronics industry -- 11.2.2 Application of functionalized nanomaterials in the electrical industry -- 11.2.3 Energy applications -- 11.2.3.1 Role of functionalized nanomaterials in oxygen evolution reaction -- 11.2.3.2 Role of functionalized nanomaterials in hydrogen evolution reaction -- 11.2.3.3 Role of functionalized nanomaterials in battery design.

9780128167885 0128167882

GBC048779 bnb

019759453 Uk


Nanostructured materials--Industrial applications--Handbooks, manuals, etc.
Nanomat�eriaux--Applications industrielles--Guides, manuels, etc.


Handbook
Handbooks and manuals.
Handbooks and manuals.
Guides et manuels.

TA418.9.N35 / H363 2020

620.1/15