Metal-organic framework-based nanomaterials for energy conversion and storage /
edited by Ram K. Gupta, Tuan Anh Nguyen and Ghulam Yasin.
- Amsterdam : Elsevier, 2022.
- 1 online resource.
- Micro and nano technologies .
- Micro & nano technologies. .
Includes index.
Metal-Organic Framework-Based Nanomaterials for Energy Conversion and Storage addresses current challenges and covers design and fabrication approaches for nanomaterials based on metal organic frameworks for energy generation and storage technologies. The effect of synthetic diversity, functionalization, ways of improving conductivity and electronic transportation, tuning-in porosity to accommodate various types of electrolyte, and the criteria to achieve the appropriate pore size, shape and surface group of different metal sites and ligands are explored. The effect of integration of other elements, such as second metals or hetero-atomic doping in the system, to improve catalytic activity and durability, are also covered. This is an important reference source for materials scientists, engineers and energy scientists looking to further their understanding on how metal organic framework-based nanomaterials are being used to create more efficient energy conversion and storage systems.
9780323998291 0323998291
GBC245993 bnb
020519780 Uk
Energy conversion.
Energy storage.
Nanocomposites (Materials)
Organometallic compounds.
Energy conversion.
Energy storage.
Nanocomposites (Materials)
Organometallic compounds.
TK2896
621.042
Includes index.
Metal-Organic Framework-Based Nanomaterials for Energy Conversion and Storage addresses current challenges and covers design and fabrication approaches for nanomaterials based on metal organic frameworks for energy generation and storage technologies. The effect of synthetic diversity, functionalization, ways of improving conductivity and electronic transportation, tuning-in porosity to accommodate various types of electrolyte, and the criteria to achieve the appropriate pore size, shape and surface group of different metal sites and ligands are explored. The effect of integration of other elements, such as second metals or hetero-atomic doping in the system, to improve catalytic activity and durability, are also covered. This is an important reference source for materials scientists, engineers and energy scientists looking to further their understanding on how metal organic framework-based nanomaterials are being used to create more efficient energy conversion and storage systems.
9780323998291 0323998291
GBC245993 bnb
020519780 Uk
Energy conversion.
Energy storage.
Nanocomposites (Materials)
Organometallic compounds.
Energy conversion.
Energy storage.
Nanocomposites (Materials)
Organometallic compounds.
TK2896
621.042