Real-Time Progressive Hyperspectral Image Processing (Record no. 52269)

000 -LEADER
fixed length control field 04513nam a22005295i 4500
001 - CONTROL NUMBER
control field 978-1-4419-6187-7
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20200420220227.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 160322s2016 xxu| s |||| 0|eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9781441961877
-- 978-1-4419-6187-7
082 04 - CLASSIFICATION NUMBER
Call Number 621.382
100 1# - AUTHOR NAME
Author Chang, Chein-I.
245 10 - TITLE STATEMENT
Title Real-Time Progressive Hyperspectral Image Processing
Sub Title Endmember Finding and Anomaly Detection /
300 ## - PHYSICAL DESCRIPTION
Number of Pages XXIII, 623 p. 331 illus., 256 illus. in color.
505 0# - FORMATTED CONTENTS NOTE
Remark 2 Overview and Introduction -- Part I: Preliminaries -- Linear Spectral Mixture Analysis -- Finding Endmembers in Hyperspectral Imagery -- Linear Spectral Unmixing with Three Criteria, Least Squares Error, Simplex Volume and Orthogonal Projection -- Hyperspectral Target Detection -- Part II: Sample-wise Sequential Processes for Finding Endmembers -- Abundance-Unconstrained Sequential Endmember Finding Algorithms: Orthogonal Projection -- Fully Abundance-Constrained Sequential Endmember Finding Algorithms: Simplex Volume Analysis -- Partially Abundance Non-Negativity-Constrained Endmember Finding Algorithms: Convex Cone Volume Analysis -- Fully Abundance-Constrained Sequential Linear Spectral Mixture Analysis for Finding Endmembers -- Part III: Sample-Wise Progressive Processes for Finding Endmembers -- Abundance-Unconstrained Progressive Endmember Finding Algorithms: Orthogonal Projection -- Fully Abundance-Unconstrained Progressive Endmember Finding Algorithms: Simplex Volume Analysis -- Partially Abundance Non-Negativity-Constrained Progressive Endmember Finding Algorithms: Convex Cone Volume Analysis -- Sully Abundance-Constrained Progressive Linear Spectral Mixture Analysis for Finding Endmembers -- Part IV: Sample-Wise Progressive Unsupervised Target Detection -- Progressive Anomaly Detection -- Progressive Adaptive Anomaly Detection -- Progressive Window-Based Anomaly Detection -- Progressive Subpixel Target Detectio n and Classification.
520 ## - SUMMARY, ETC.
Summary, etc The book covers the most crucial parts of real-time hyperspectral image processing: causality and real-time capability. Recently, two new concepts of real time hyperspectral image processing, Progressive Hyperspectral Imaging (PHSI) and Recursive Hyperspectral Imaging (RHSI). Both of these can be used to design algorithms and also form an integral part of real time hyperpsectral image processing. This book focuses on progressive nature in algorithms on their real-time and causal processing implementation in two major applications, endmember finding and anomaly detection, both of which are fundamental tasks in hyperspectral imaging but generally not encountered in multispectral imaging. This book is written to particularly address PHSI in real time processing, while a book, Recursive Hyperspectral Sample and Band Processing: Algorithm Architecture and Implementation (Springer 2016) can be considered as its companion book. Includes preliminary background which is essential to those who work in hyperspectral imaging area Develops sequential and progressive algorithms for finding endmembers as they relate to real time hyperspectral image processing Designs algorithms for anomaly detection from causality and real time perspectives and investigates the effects of causality and real-time processing in anomaly detection.
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier http://dx.doi.org/10.1007/978-1-4419-6187-7
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- New York, NY :
-- Springer New York :
-- Imprint: Springer,
-- 2016.
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
347 ## -
-- text file
-- PDF
-- rda
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Engineering.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Image processing.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Pattern recognition.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Biometrics (Biology).
650 14 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Engineering.
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Signal, Image and Speech Processing.
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Image Processing and Computer Vision.
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Pattern Recognition.
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Biometrics.
912 ## -
-- ZDB-2-ENG

No items available.