Genetic algorithms in electromagnetics / (Record no. 59357)

000 -LEADER
fixed length control field 08048nam a2200937 i 4500
001 - CONTROL NUMBER
control field 5237622
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20200421114111.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 070425t20152007njua ob 001 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9780470106280
-- electronic
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- paper
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic
082 04 - CLASSIFICATION NUMBER
Call Number 621.30285/631
100 1# - AUTHOR NAME
Author Haupt, Randy L.
245 10 - TITLE STATEMENT
Title Genetic algorithms in electromagnetics /
300 ## - PHYSICAL DESCRIPTION
Number of Pages 1 PDF (xiii, 301 pages) :
505 0# - FORMATTED CONTENTS NOTE
Remark 2 Preface. -- Acknowledgments. -- 1. Introduction to Optimization in Electromagnetics. -- 1.1 Optimizing a Function of One Variable. -- 1.1.1 Exhaustive Search. -- 1.1.2 Random Search. -- 1.1.3 Golden Search. -- 1.1.4 Newton's Method. -- 1.1.5 Quadratic Interpolation. -- 1.2 Optimizing a Function of Multiple Variables. -- 1.2.1 Random Search. -- 1.2.2 Line Search. -- 1.2.3 Nelder-Mead Downhill Simplex Algorithm. -- 1.3 Comparing Local Numerical Optimization Algorithms. -- 1.4 Simulated Annealing. -- 1.5 Genetic Algorithm. -- 2. Anatomy of a Genetic Algorithm. -- 2.1 Creating an Initial Population. -- 2.2 Evaluating Fitness. -- 2.3 Natural Selection. -- 2.4 Mate Selection. -- 2.4.1 Roulette Wheel Selection. -- 2.4.2 Tournament Selection. -- 2.5 Generating Offspring. -- 2.6 Mutation. -- 2.7 Terminating the Run. -- 3. Step-by-Step Examples. -- 3.1 Placing Nulls. -- 3.2 Thinned Arrays. -- 4. Optimizing Antenna Arrays. -- 4.1 Optimizing Array Amplitude Tapers. -- 4.2 Optimizing Array Phase Tapers. -- 4.2.1 Optimum Quantized Low-Sidelobe Phase Tapers. -- 4.2.2 Phase-Only Array Synthesis Using Adaptive GAs. -- 4.3 Optimizing Arrays with Complex Weighting. -- 4.3.1 Shaped-Beam Synthesis. -- 4.3.2 Creating a Plane Wave in the Near Field. -- 4.4 Optimizing Array Element Spacing. -- 4.4.1 Thinned Arrays. -- 4.4.2 Interleaved Thinned Linear Arrays. -- 4.4.3 Array Element Perturbation. -- 4.4.4 Aperiodic Fractile Arrays. -- 4.4.5 Fractal-Random and Polyfractal Arrays. -- 4.4.6 Aperiodic Refl ectarrays. -- 4.5 Optimizing Conformal Arrays. -- 4.6 Optimizing Reconfi gurable Apertures. -- 4.6.1 Planar Reconfi gurable Cylindrical Wire Antenna Design. -- 4.6.2 Planar Reconfi gurable Ribbon Antenna Design. -- 4.6.3 Design of Volumetric Reconfi gurable Antennas. -- 4.6.4 Simulation Results-Planar Reconfi gurable Cylindrical Wire Antenna. -- 4.6.5 Simulation Results-Volumetric Reconfi gurable Cylindrical Wire Antenna. -- 4.6.6 Simulation Results-Planar Reconfi gurable Ribbon Antenna. -- 5. Smart Antennas Using a GA.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 5.1 Amplitude and Phase Adaptive Nulling. -- 5.2 Phase-Only Adaptive Nulling. -- 5.3 Adaptive Reflector. -- 5.4 Adaptive Crossed Dipoles. -- 6. Genetic Algorithm Optimization of Wire Antennas. -- 6.1 Introduction. -- 6.2 GA Design of Electrically Loaded Wire Antennas. -- 6.3 GA Design of Three-Dimensional Crooked-Wire Antennas. -- 6.4 GA Design of Planar Crooked-Wire and Meander-Line Antennas. -- 6.5 GA Design of Yagida Antennas. -- 7. Optimization of Aperture Antennas. -- 7.1 Refl ector Antennas. -- 7.2 Horn Antennas. -- 7.3 Microstrip Antennas. -- 8. Optimization of Scattering. -- 8.1 Scattering from an Array of Strips. -- 8.2 Scattering from Frequency-Selective Surfaces. -- 8.2.1 Optimization of FSS Filters. -- 8.2.2 Optimization of Reconfi gurable FSSs. -- 8.2.3 Optimization of EBGs. -- 8.3 Scattering from Absorbers. -- 8.3.1 Conical or Wedge Absorber Optimization. -- 8.3.2 Multilayer Dielectric Broadband Absorber Optimization. -- 8.3.3 Ultrathin Narrowband Absorber Optimization. -- 9. GA Extensions. -- 9.1 Selecting Population Size and Mutation Rate. -- 9.2 Particle Swarm Optimization (PSO). -- 9.3 Multiple-Objective Optimization. -- 9.3.1 Introduction. -- 9.3.2 Strength Pareto Evolutionary Algorithm Strength Value Calculation. -- 9.3.3 Strength Pareto Evolutionary Algorithm Pareto Set Clustering. -- 9.3.4 Strength Pareto Evolutionary Algorithm Implementation. -- 9.3.5 SPEA-Optimized Planar Arrays. -- 9.3.6 SPEA-Optimized Planar Polyfractal Arrays. -- Appendix: MATLAB Code. -- Bibliography. -- Index.
520 ## - SUMMARY, ETC.
Summary, etc A thorough and insightful introduction to using genetic algorithms to optimize electromagnetic systems Genetic Algorithms in Electromagnetics focuses on optimizing the objective function when a computer algorithm, analytical model, or experimental result describes the performance of an electromagnetic system. It offers expert guidance to optimizing electromagnetic systems using genetic algorithms (GA), which have proven to be tenacious in finding optimal results where traditional techniques fail. Genetic Algorithms in Electromagnetics begins with an introduction to optimization and several commonly used numerical optimization routines, and goes on to feature: . Introductions to GA in both binary and continuous variable forms, complete with examples of MATLAB(r) commands. Two step-by-step examples of optimizing antenna arrays as well as a comprehensive overview of applications of GA to antenna array design problems. Coverage of GA as an adaptive algorithm, including adaptive and smart arrays as well as adaptive reflectors and crossed dipoles. Explanations of the optimization of several different wire antennas, starting with the famous "crooked monopole". How to optimize horn, reflector, and microstrip patch antennas, which require significantly more computing power than wire antennas. Coverage of GA optimization of scattering, including scattering from frequency selective surfaces and electromagnetic band gap materials. Ideas on operator and parameter selection for a GA. Detailed explanations of particle swarm optimization and multiple objective optimization. An appendix of MATLAB code for experimentation.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
General subdivision Design.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
General subdivision Mathematical models.
700 1# - AUTHOR 2
Author 2 Werner, Douglas H.,
856 42 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5237622
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Hoboken, New Jersey :
-- IEEE Press :
-- c2007.
336 ## -
-- text
-- rdacontent
337 ## -
-- electronic
-- isbdmedia
338 ## -
-- online resource
-- rdacarrier
588 ## -
-- Description based on PDF viewed 12/18/2015.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Antenna arrays
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Electromagnetism
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Genetic algorithms.
695 ## -
-- Adaptive arrays
695 ## -
-- Antenna arrays
695 ## -
-- Antenna radiation patterns
695 ## -
-- Aperture antennas
695 ## -
-- Arrays
695 ## -
-- Bibliographies
695 ## -
-- Biological cells
695 ## -
-- Broadband antennas
695 ## -
-- Computers
695 ## -
-- Convergence
695 ## -
-- Cost function
695 ## -
-- Electromagnetics
695 ## -
-- Encoding
695 ## -
-- Evolution (biology)
695 ## -
-- Gallium
695 ## -
-- Generators
695 ## -
-- Genetic algorithms
695 ## -
-- Genetics
695 ## -
-- Horn antennas
695 ## -
-- Indexes
695 ## -
-- Interference
695 ## -
-- Linear antenna arrays
695 ## -
-- Loaded antennas
695 ## -
-- MATLAB
695 ## -
-- Moment methods
695 ## -
-- Monitoring
695 ## -
-- Optimization
695 ## -
-- Particle swarm optimization
695 ## -
-- Phase shifters
695 ## -
-- Phased arrays
695 ## -
-- Polynomials
695 ## -
-- Power generation
695 ## -
-- Scattering
695 ## -
-- Signal processing algorithms
695 ## -
-- Wheels
695 ## -
-- Wire

No items available.