An introduction to audio content analysis : (Record no. 59839)

000 -LEADER
fixed length control field 09818nam a2201081 i 4500
001 - CONTROL NUMBER
control field 6266785
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20200421114417.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 151221s2012 nju ob 001 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9781118393550
-- ebook
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- print
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic
082 00 - CLASSIFICATION NUMBER
Call Number 006.4/5
100 1# - AUTHOR NAME
Author Lerch, Alexander,
245 13 - TITLE STATEMENT
Title An introduction to audio content analysis :
Sub Title applications in signal processing and music informatics /
300 ## - PHYSICAL DESCRIPTION
Number of Pages 1 PDF (xxii, 248 pages).
505 8# - FORMATTED CONTENTS NOTE
Remark 2 Machine generated contents note: 1.1.Audio Content -- 1.2.A Generalized Audio Content Analysis System -- 2.1.Audio Signals -- 2.1.1.Periodic Signals -- 2.1.2.Random Signals -- 2.1.3.Sampling and Quantization -- 2.1.4.Statistical Signal Description -- 2.2.Signal Processing -- 2.2.1.Convolution -- 2.2.2.Block-Based Processing -- 2.2.3.Fourier Transform -- 2.2.4.Constant Q Transform -- 2.2.5.Auditory Filterbanks -- 2.2.6.Correlation Function -- 2.2.7.Linear Prediction -- 3.1.Audio Pre-Processing -- 3.1.1.Down-Mixing -- 3.1.2.DC Removal -- 3.1.3.Normalization -- 3.1.4.Down-Sampling -- 3.1.5.Other Pre-Processing Options -- 3.2.Statistical Properties -- 3.2.1.Arithmetic Mean -- 3.2.2.Geometric Mean -- 3.2.3.Harmonic Mean -- 3.2.4.Generalized Mean -- 3.2.5.Centroid -- 3.2.6.Variance and Standard Deviation -- 3.2.7.Skewness -- 3.2.8.Kurtosis -- 3.2.9.Generalized Central Moments -- 3.2.10.Quantiles and Quantile Ranges -- 3.3.Spectral Shape -- 3.3.1.Spectral Rolloff --
505 8# - FORMATTED CONTENTS NOTE
Remark 2 Contents note continued: 3.3.2.Spectral Flux -- 3.3.3.Spectral Centroid -- 3.3.4.Spectral Spread -- 3.3.5.Spectral Decrease -- 3.3.6.Spectral Slope -- 3.3.7.Mel Frequency Cepstral Coefficients -- 3.4.Signal Properties -- 3.4.1.Tonalness -- 3.4.2.Autocorrelation Coefficients -- 3.4.3.Zero Crossing Rate -- 3.5.Feature Post-Processing -- 3.5.1.Derived Features -- 3.5.2.Normalization and Mapping -- 3.5.3.Subfeatures -- 3.5.4.Feature Dimensionality Reduction -- 4.1.Human Perception of Intensity and Loudness -- 4.2.Representation of Dynamics in Music -- 4.3.Features -- 4.3.1.Root Mean Square -- 4.4.Peak Envelope -- 4.5.Psycho-Acoustic Loudness Features -- 4.5.1.EBU R128 -- 5.1.Human Perception of Pitch -- 5.1.1.Pitch Scales -- 5.1.2.Chroma Perception -- 5.2.Representation of Pitch in Music -- 5.2.1.Pitch Classes and Names -- 5.2.2.Intervals -- 5.2.3.Root Note, Mode, and Key -- 5.2.4.Chords and Harmony -- 5.2.5.The Frequency of Musical Pitch -- 5.3.Fundamental Frequency Detection --
505 8# - FORMATTED CONTENTS NOTE
Remark 2 Contents note continued: 5.3.1.Detection Accuracy -- 5.3.2.Pre-Processing -- 5.3.3.Monophonic Input Signals -- 5.3.4.Polyphonic Input Signals -- 5.4.Tuning Frequency Estimation -- 5.5.Key Detection -- 5.5.1.Pitch Chroma -- 5.5.2.Key Recognition -- 5.6.Chord Recognition -- 6.1.Human Perception of Temporal Events -- 6.1.1.Onsets -- 6.1.2.Tempo and Meter -- 6.1.3.Rhythm -- 6.1.4.Timing -- 6.2.Representation of Temporal Events in Music -- 6.2.1.Tempo and Time Signature -- 6.2.2.Note Value -- 6.3.Onset Detection -- 6.3.1.Novelty Function -- 6.3.2.Peak Picking -- 6.3.3.Evaluation -- 6.4.Beat Histogram -- 6.4.1.Beat Histogram Features -- 6.5.Detection of Tempo and Beat Phase -- 6.6.Detection of Meter and Downbeat -- 7.1.Dynamic Time Warping -- 7.1.1.Example -- 7.1.2.Common Variants -- 7.1.3.Optimizations -- 7.2.Audio-to-Audio Alignment -- 7.2.1.Ground Truth Data for Evaluation -- 7.3.Audio-to-Score Alignment -- 7.3.1.Real-Time Systems M -- 7.3.2.Non-Real-Time Systems --
505 8# - FORMATTED CONTENTS NOTE
Remark 2 Contents note continued: 8.1.Musical Genre Classification -- 8.1.1.Musical Genre -- 8.1.2.Feature Extraction -- 8.1.3.Classification -- 8.2.Related Research Fields -- 8.2.1.Music Similarity Detection -- 8.2.2.Mood Classification -- 8.2.3.Instrument Recognition -- 9.1.Fingerprint Extraction -- 9.2.Fingerprint Matching -- 9.3.Fingerprinting System: Example -- 10.1.Musical Communication -- 10.1.1.Score -- 10.1.2.Music Performance -- 10.1.3.Production -- 10.1.4.Recipient -- 10.2.Music Performance Analysis -- 10.2.1.Analysis Data -- 10.2.2.Research Results -- A.1.Identity -- A.2.Commutativity -- A.3.Associativity -- A.4.Distributivity -- A.5.Circularity -- B.1.Properties of the Fourier Transformation -- B.1.1.Inverse Fourier Transform -- B.1.2.Superposition -- B.1.3.Convolution and Multiplication -- B.1.4.Parseval's Theorem -- B.1.5.Time and Frequency Shift -- B.1.6.Symmetry -- B.1.7.Time and Frequency Scaling -- B.1.8.Derivatives -- B.2.Spectrum of Example Time Domain Signals --
505 8# - FORMATTED CONTENTS NOTE
Remark 2 Contents note continued: B.2.1.Delta Function -- B.2.2.Constant -- B.2.3.Cosine -- B.2.4.Rectangular Window -- B.2.5.Delta Pulse -- B.3.Transformation of Sampled Time Signals -- B.4.Short Time Fourier Transform of Continuous Signals -- B.4.1.Window Functions -- B.5.Discrete Fourier Transform -- B.5.1.Window Functions -- B.5.2.Fast Fourier Transform -- C.1.Computation of the Transformation Matrix -- C.2.Interpretation of the Transformation Matrix -- D.1.Software Frameworks and Applications -- D.1.1.Marsyas -- D.1.2.CLAM -- D.1.3.jMIR -- D.1.4.CoMIRVA -- D.1.5.Sonic Visualiser -- D.2.Software Libraries and Toolboxes -- D.2.1.Feature Extraction -- D.2.2.Plugin Interfaces -- D.2.3.Other Software.
520 ## - SUMMARY, ETC.
Summary, etc An easily accessible, hands-on approach to digital audio signal processingWith the proliferation of digital audio distribution over digital media, the amount of easily accessible music is ever-growing, requiring new tools for navigating, accessing, and retrieving music in meaningful ways. An understanding of audio content analysis is essential for the design of intelligent music information retrieval applications and content-adaptive audio processing systems.This book is about how to teach a computer to interpret music signals, thus allowing the design of tools for interacting with music. This book serves as a comprehensive guide on audio content analysis and how to apply it in signal processing and music informatics. Written by a well-known expert in the music industry, An Introduction to Audio Content Analysis ties together topics from audio signal processing and machine learning, showing how to use audio content analysis to pick up musical characteristics automatically. The author clearly explains the analysis of audio signals and the extraction of metadata describing the content of the signal, covering both abstract descriptions of technical properties and musical descriptions such as tempo, harmony and key, musical style, and performance attributes. Musical information is given a separate analysis in each category, whether tonal, pitch, harmony, key, temporal, or tempo, among others.Readers will get access to various analysis algorithms and learn to compare different standard approaches to the same task. The book includes a review of the fundamentals of audio signal processing, psychoacoustics, and music theory.An invaluable guide for newcomers to audio signal processing and industry experts alike, An Introduction to Audio Content Analysis also features downloadable MATLAB files from a companion website, www.AudioContentAnalysis.org, lists of abbreviations and symbols, and references.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
General subdivision Data processing.
856 42 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier http://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6266785
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Hoboken, New Jersey :
-- Wiley,
-- c2012.
264 #2 -
-- [Piscataqay, New Jersey] :
-- IEEE Xplore,
-- [2012]
336 ## -
-- text
-- rdacontent
337 ## -
-- electronic
-- isbdmedia
338 ## -
-- online resource
-- rdacarrier
588 ## -
-- Description based on PDF viewed 12/21/2015.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Content analysis (Communication)
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Computational auditory scene analysis.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Computer sound processing.
695 ## -
-- Accuracy
695 ## -
-- Algorithm design and analysis
695 ## -
-- Analytical models
695 ## -
-- Approximation methods
695 ## -
-- Bandwidth
695 ## -
-- Books
695 ## -
-- Context
695 ## -
-- Data mining
695 ## -
-- Databases
695 ## -
-- Degradation
695 ## -
-- Distortion
695 ## -
-- Feature extraction
695 ## -
-- Fingerprint recognition
695 ## -
-- Frequency measurement
695 ## -
-- Harmonic analysis
695 ## -
-- Heuristic algorithms
695 ## -
-- Humans
695 ## -
-- Indexes
695 ## -
-- Instruments
695 ## -
-- Interpolation
695 ## -
-- Low pass filters
695 ## -
-- Microphones
695 ## -
-- Mood
695 ## -
-- Multiple signal classification
695 ## -
-- Music
695 ## -
-- Performance analysis
695 ## -
-- Production
695 ## -
-- Quantization
695 ## -
-- Real-time systems
695 ## -
-- Rhythm
695 ## -
-- Robustness
695 ## -
-- Rocks
695 ## -
-- Software
695 ## -
-- Standards
695 ## -
-- Support vector machine classification
695 ## -
-- Synchronization
695 ## -
-- Taxonomy
695 ## -
-- Timing
695 ## -
-- Transfer functions
695 ## -
-- Transient analysis
695 ## -
-- Visualization
695 ## -
-- Watermarking

No items available.