Data science using Python and R / (Record no. 69036)

000 -LEADER
fixed length control field 04620cam a2200733 i 4500
001 - CONTROL NUMBER
control field on1089273491
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20220711203506.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 190227t20192019njua ob 001 0 eng
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9781119526841
-- (electronic book)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 1119526841
-- (electronic book)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9781119526834
-- (electronic book)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 1119526833
-- (electronic book)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9781119526865
-- (electronic book)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 1119526868
-- (electronic book)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- (hardcover)
029 1# - (OCLC)
OCLC library identifier AU@
System control number 000065306712
029 1# - (OCLC)
OCLC library identifier CHNEW
System control number 001050875
029 1# - (OCLC)
OCLC library identifier CHVBK
System control number 567422283
029 1# - (OCLC)
OCLC library identifier UKMGB
System control number 019327510
029 1# - (OCLC)
OCLC library identifier AU@
System control number 000066105039
037 ## -
-- 9781119526841
-- Wiley
082 00 - CLASSIFICATION NUMBER
Call Number 006.3/12
100 1# - AUTHOR NAME
Author Larose, Chantal D.,
245 10 - TITLE STATEMENT
Title Data science using Python and R /
300 ## - PHYSICAL DESCRIPTION
Number of Pages 1 online resource (xvii, 238 pages)
520 ## - SUMMARY, ETC.
Summary, etc Learn data science by doing data science! Data Science Using Python and R will get you plugged into the world's two most widespread open-source platforms for data science: Python and R. Data science is hot. Bloomberg called data scientist "the hottest job in America." Python and R are the top two open-source data science tools in the world. In Data Science Using Python and R, you will learn step-by-step how to produce hands-on solutions to real-world business problems, using state-of-the-art techniques. Data Science Using Python and R is written for the general reader with no previous analytics or programming experience. An entire chapter is dedicated to learning the basics of Python and R. Then, each chapter presents step-by-step instructions and walkthroughs for solving data science problems using Python and R. Those with analytics experience will appreciate having a one-stop shop for learning how to do data science using Python and R. Topics covered include data preparation, exploratory data analysis, preparing to model the data, decision trees, model evaluation, misclassification costs, naIve Bayes classification, neural networks, clustering, regression modeling, dimension reduction, and association rules mining. Further, exciting new topics such as random forests and general linear models are also included. The book emphasizes data-driven error costs to enhance profitability, which avoids the common pitfalls that may cost a company millions of dollars. Data Science Using Python and R provides exercises at the end of every chapter, totaling over 500 exercises in the book. Readers will therefore have plenty of opportunity to test their newfound data science skills and expertise. In the Hands-on Analysis exercises, readers are challenged to solve interesting business problems using real-world data sets.
650 #7 - SUBJECT ADDED ENTRY--SUBJECT 1
General subdivision General.
700 1# - AUTHOR 2
Author 2 Larose, Daniel T.,
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://doi.org/10.1002/9781119526865
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Hoboken, NJ :
-- John Wiley & Sons, Inc,
-- 2019.
264 #4 -
-- ©2019
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- n
-- rdamedia
338 ## -
-- online resource
-- nc
-- rdacarrier
588 0# -
-- Online resource; title from digital title page (viewed on April 03, 2019).
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Data mining.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Python (Computer program language)
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- R (Computer program language)
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Big data.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Data structures (Computer science)
650 #7 - SUBJECT ADDED ENTRY--SUBJECT 1
-- COMPUTERS
650 #7 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Big data.
-- (OCoLC)fst01892965
650 #7 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Data mining.
-- (OCoLC)fst00887946
650 #7 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Data structures (Computer science)
-- (OCoLC)fst00887978
650 #7 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Python (Computer program language)
-- (OCoLC)fst01084736
650 #7 - SUBJECT ADDED ENTRY--SUBJECT 1
-- R (Computer program language)
-- (OCoLC)fst01086207
994 ## -
-- 92
-- DG1

No items available.