Multi-processor system-on-chip. (Record no. 69510)

000 -LEADER
fixed length control field 04752cam a2200541Ia 4500
001 - CONTROL NUMBER
control field on1243532832
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20220711203652.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 210327s2021 enk o 000 0 eng d
019 ## -
-- 1242577731
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9781119818298
-- (electronic bk. : oBook)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 111981829X
-- (electronic bk. : oBook)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9781119818274
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 1119818273
029 1# - (OCLC)
OCLC library identifier AU@
System control number 000069138768
082 04 - CLASSIFICATION NUMBER
Call Number 006.2/2
245 00 - TITLE STATEMENT
Title Multi-processor system-on-chip.
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication London :
Publisher ISTE, Ltd. ;
Place of publication Hoboken :
Publisher Wiley,
Year of publication 2021.
300 ## - PHYSICAL DESCRIPTION
Number of Pages 1 online resource (321 p.)
500 ## - GENERAL NOTE
Remark 1 Description based upon print version of record.
505 0# - FORMATTED CONTENTS NOTE
Remark 2 Cover -- Half-Title Page -- Dedication -- Title Page -- Copyright Page -- Contents -- Foreword -- Acknowledgments -- PART 1: Processors -- 1 Processors for the Internet of Things -- 1.1. Introduction -- 1.2. Versatile processors for low-power IoT edge devices -- 1.2.1. Control processing, DSP and machine learning -- 1.2.2. Configurability and extensibility -- 1.3. Machine learning inference -- 1.3.1. Requirements for low/mid-end machine learning inference -- 1.3.2. Processor capabilities for low-power machine learning inference -- 1.3.3. A software library for machine learning inference
505 8# - FORMATTED CONTENTS NOTE
Remark 2 1.3.4. Example machine learning applications and benchmarks -- 1.4. Conclusion -- 1.5. References -- 2 A Qualitative Approach to Many-core Architecture -- 2.1. Introduction -- 2.2. Motivations and context -- 2.2.1. Many-core processors -- 2.2.2. Machine learning inference -- 2.2.3. Application requirements -- 2.3. The MPPA3 many-core processor -- 2.3.1. Global architecture -- 2.3.2. Compute cluster -- 2.3.3. VLIW core -- 2.3.4. Coprocessor -- 2.4. The MPPA3 software environments -- 2.4.1. High-performance computing -- 2.4.2. KaNN code generator -- 2.4.3. High-integrity computing
505 8# - FORMATTED CONTENTS NOTE
Remark 2 2.5. Conclusion -- 2.6. References -- 3 The Plural Many-core Architecture -- High Performance at Low Power -- 3.1. Introduction -- 3.2. Related works -- 3.3. Plural many-core architecture -- 3.4. Plural programming model -- 3.5. Plural hardware scheduler/synchronizer -- 3.6. Plural networks-on-chip -- 3.6.1. Scheduler NoC -- 3.6.2. Shared memory NoC -- 3.7. Hardware and software accelerators for the Plural architecture -- 3.8. Plural system software -- 3.9. Plural software development tools -- 3.10. Matrix multiplication algorithm on the Plural architecture
505 8# - FORMATTED CONTENTS NOTE
Remark 2 4 ASIP-Based Multi-Processor Systems for an Efficient Implementation of CNNs -- 4.1. Introduction -- 4.2. Related works -- 4.3. ASIP architecture -- 4.4. Single-core scaling -- 4.5. MPSoC overview -- 4.6. NoC parameter exploration -- 4.7. Summary and conclusion -- 4.8. References -- PART 2: Memory -- 5 Tackling the MPSoC DataLocality Challenge -- 5.1. Motivation -- 5.2. MPSoC target platform -- 5.3. Related work -- 5.4. Coherence-on-demand: region-based cache coherence -- 5.4.1. RBCC versus global coherence -- 5.4.2. OS extensions for coherence-on-demand -- 5.4.3. Coherency region manager
505 8# - FORMATTED CONTENTS NOTE
Remark 2 5.4.4. Experimental evaluations -- 5.4.5. RBCC and data placement -- 5.5. Near-memory acceleration -- 5.5.1. Near-memory synchronization accelerator -- 5.5.2. Near-memory queue management accelerator -- 5.5.3. Near-memory graph copy accelerator -- 5.5.4. Near-cache accelerator -- 5.6. The big picture -- 5.7. Conclusion -- 5.8. Acknowledgments -- 5.9. References -- 6 mMPU: Building a Memristor-based General-purpose In-memory Computation Architecture -- 6.1. Introduction -- 6.2. MAGIC NOR gate -- 6.3. In-memory algorithms for latency reduction -- 6.4. Synthesis and in-memory mapping methods
500 ## - GENERAL NOTE
Remark 1 6.4.1. SIMPLE.
700 1# - AUTHOR 2
Author 2 Andrade, Liliana.
700 1# - AUTHOR 2
Author 2 Rousseau, Frédéric,
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://doi.org/10.1002/9781119818298
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Systems on a chip.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Multiprocessors.
650 #7 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Multiprocessors.
-- (OCoLC)fst01029068
650 #7 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Systems on a chip.
-- (OCoLC)fst01141473
994 ## -
-- 92
-- DG1

No items available.