Learning from data : (Record no. 73671)

000 -LEADER
fixed length control field 04980nam a2201237 i 4500
001 - CONTROL NUMBER
control field 5201503
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20220712205544.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 101007t20152007njua ob 001 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9780470140529
-- electronic
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- paper
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic
082 04 - CLASSIFICATION NUMBER
Call Number 006.3/1
100 1# - AUTHOR NAME
Author Cherkassky, Vladimir S.
245 10 - TITLE STATEMENT
Title Learning from data :
Sub Title concepts, theory, and methods /
250 ## - EDITION STATEMENT
Edition statement 2nd ed.
300 ## - PHYSICAL DESCRIPTION
Number of Pages 1 PDF (xviii, 538 pages) :
505 0# - FORMATTED CONTENTS NOTE
Remark 2 Problem statement, classical approaches, and adaptive learning -- Regularization framework -- Statistical learning theory -- Nonlinear optimization strategies -- Methods for data reduction and dimensionality reduction -- Methods for regression -- Classification -- Support vector machines -- Noninductive inference and alternative learning formulations.
520 ## - SUMMARY, ETC.
Summary, etc An interdisciplinary framework for learning methodologies--covering statistics, neural networks, and fuzzy logic, this book provides a unified treatment of the principles and methods for learning dependencies from data. It establishes a general conceptual framework in which various learning methods from statistics, neural networks, and fuzzy logic can be applied--showing that a few fundamental principles underlie most new methods being proposed today in statistics, engineering, and computer science. Complete with over one hundred illustrations, case studies, and examples making this an invaluable text.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Adaptive signal processing.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Machine learning.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Neural networks (Computer science)
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Fuzzy systems.
700 1# - AUTHOR 2
Author 2 Mulier, Filip.
856 42 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5201503
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Hoboken, New Jersey :
-- IEEE Press :
-- c2007.
336 ## -
-- text
-- rdacontent
337 ## -
-- electronic
-- isbdmedia
338 ## -
-- online resource
-- rdacarrier
588 ## -
-- Description based on PDF viewed 12/19/2015.
695 ## -
-- Adaptation model
695 ## -
-- Aerospace electronics
695 ## -
-- Analytical models
695 ## -
-- Approximation algorithms
695 ## -
-- Approximation methods
695 ## -
-- Artificial intelligence
695 ## -
-- Artificial neural networks
695 ## -
-- Bibliographies
695 ## -
-- Biological system modeling
695 ## -
-- Biology
695 ## -
-- Books
695 ## -
-- Boosting
695 ## -
-- Clustering algorithms
695 ## -
-- Clustering methods
695 ## -
-- Complexity theory
695 ## -
-- Convergence
695 ## -
-- Data models
695 ## -
-- Dictionaries
695 ## -
-- Eigenvalues and eigenfunctions
695 ## -
-- Encoding
695 ## -
-- Estimation
695 ## -
-- Function approximation
695 ## -
-- Generators
695 ## -
-- Hafnium
695 ## -
-- Humans
695 ## -
-- Hypercubes
695 ## -
-- Indexes
695 ## -
-- Iterative methods
695 ## -
-- Kernel
695 ## -
-- Learning systems
695 ## -
-- Linear approximation
695 ## -
-- Machine learning
695 ## -
-- Matrix decomposition
695 ## -
-- Minimization
695 ## -
-- Newton method
695 ## -
-- Optimization
695 ## -
-- Optimization methods
695 ## -
-- Parameter estimation
695 ## -
-- Pattern recognition
695 ## -
-- Polynomials
695 ## -
-- Predictive models
695 ## -
-- Principal component analysis
695 ## -
-- Probabilistic logic
695 ## -
-- Probability
695 ## -
-- Prototypes
695 ## -
-- Risk management
695 ## -
-- Sections
695 ## -
-- Singular value decomposition
695 ## -
-- Statistical learning
695 ## -
-- Support vector machines
695 ## -
-- Symmetric matrices
695 ## -
-- Taxonomy
695 ## -
-- Training
695 ## -
-- Training data
695 ## -
-- Uncertainty
695 ## -
-- Unsupervised learning
695 ## -
-- Vector quantization
695 ## -
-- Vectors
695 ## -
-- Zinc

No items available.