A field guide to dynamical recurrent networks / (Record no. 73823)

000 -LEADER
fixed length control field 07300nam a2201513 i 4500
001 - CONTROL NUMBER
control field 5263132
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20220712205627.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 100317t20152001nyua ob 001 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9780470544037
-- electronic
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- print
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic
082 04 - CLASSIFICATION NUMBER
Call Number 006.3/2
245 02 - TITLE STATEMENT
Title A field guide to dynamical recurrent networks /
300 ## - PHYSICAL DESCRIPTION
Number of Pages 1 PDF (xxx, 421 pages) :
500 ## - GENERAL NOTE
Remark 1 "IEEE order no. PC5809"--T.p. verso.
505 0# - FORMATTED CONTENTS NOTE
Remark 2 Preface. Acknowledgments. List of Figures. List of Tables. List of Contributors. INTRODUCTION. Dynamical Recurrent Networks (J. Kolen and S. Kremer). ARCHITECTURES. Networks with Adaptive State Transitions (D. Calvert and S. Kremer). Delay Networks: Buffers to Rescue (T. Lin and C. Giles). Memory Kernels (A. Tsoi, et al.). CAPABILITIES. Dynamical Systems and Iterated Function Systems (J. Kolen). Representation of Discrete States (C. Giles and C. Omlin). Simple Stable Encodings of Finite-State Machines in Dynamic Recurrent Networks (M. Forcada and R. Carrasco). Representation Beyond Finite States: Alternatives to Pushdown Automata (J. Wiles, et al.). Universal Computation and Super-Turing Capabilities (H. Siegelmann). ALGORITHMS. Insertion of Prior Knowledge (P. Frasconi, et al.). Gradient Calculations for Dynamic Recurrent Neural Networks (B. Pearlmutter). Understanding and Explaining DRN Behavior (C. Omlin). LIMITATIONS. Evaluating Benchmark Problems by Random Guessing (J. Schmidhuber, et al.). Gradient Flow in Recurrent Nets: The Difficulty of Learning Long-Term Dependencies (S. Hochreiter, et al.. Limiting the Computational Power of Recurrent Neural Networks: VC Dimension and Noise (C. Moore). APPLICATIONS. Dynamical Reccurent Networks in Control (D. Prokhorov, et al.). Sentence Processing and Linguistic Structure (W. Tabor). Neural Network Architectures for the Modeling of Dynamic Systems (H. Zimmerman and R. Neuneier). From Sequences to Data Structures: Theory and Applications (P. Frasconi, et al.). CONCLUSION. Dynamical Recurrent Networks: Looking Back and Looking Forward (S. Kremer and J. Kolen). Bibliography. Glossary. Index. About the Editors.
520 ## - SUMMARY, ETC.
Summary, etc Acquire the tools for understanding new architectures and algorithms of dynamical recurrent networks (DRNs) from this valuable field guide, which documents recent forays into artificial intelligence, control theory, and connectionism. This unbiased introduction to DRNs and their application to time-series problems (such as classification and prediction) provides a comprehensive overview of the recent explosion of leading research in this prolific field. A Field Guide to Dynamical Recurrent Networks emphasizes the issues driving the development of this class of network structures. It provides a solid foundation in DRN systems theory and practice using consistent notation and terminology. Theoretical presentations are supplemented with applications ranging from cognitive modeling to financial forecasting. A Field Guide to Dynamical Recurrent Networks will enable engineers, research scientists, academics, and graduate students to apply DRNs to various real-world problems and learn about different areas of active research. It provides both state-of-the-art information and a road map to the future of cutting-edge dynamical recurrent networks.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Neural networks (Computer science)
700 1# - AUTHOR 2
Author 2 Kolen, John F.,
700 1# - AUTHOR 2
Author 2 Kremer, Stefan C.,
856 42 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5263132
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- New York :
-- IEEE Press,
-- c2001.
264 #2 -
-- [Piscataqay, New Jersey] :
-- IEEE Xplore,
-- [2009]
336 ## -
-- text
-- rdacontent
337 ## -
-- electronic
-- isbdmedia
338 ## -
-- online resource
-- rdacarrier
588 ## -
-- Description based on PDF viewed 12/21/2015.
695 ## -
-- Recurrent neural networks
695 ## -
-- Regions
695 ## -
-- Robots
695 ## -
-- Robustness
695 ## -
-- Sections
695 ## -
-- Silicon
695 ## -
-- Skeleton
695 ## -
-- Stability analysis
695 ## -
-- Switches
695 ## -
-- Syntactics
695 ## -
-- Taxonomy
695 ## -
-- Tensile stress
695 ## -
-- Terminology
695 ## -
-- Time series analysis
695 ## -
-- Trademarks
695 ## -
-- Training
695 ## -
-- Trajectory
695 ## -
-- Transfer functions
695 ## -
-- Transient analysis
695 ## -
-- Turbo codes
695 ## -
-- Turing machines
695 ## -
-- Upper bound
695 ## -
-- Viterbi algorithm
695 ## -
-- Wireless communication
695 ## -
-- Adaptive systems
695 ## -
-- Algorithm design and analysis
695 ## -
-- Approximation algorithms
695 ## -
-- Approximation methods
695 ## -
-- Arrays
695 ## -
-- Artificial neural networks
695 ## -
-- Automata
695 ## -
-- Benchmark testing
695 ## -
-- Bibliographies
695 ## -
-- Biographies
695 ## -
-- Biological system modeling
695 ## -
-- Books
695 ## -
-- Chaos
695 ## -
-- Clustering algorithms
695 ## -
-- Computational modeling
695 ## -
-- Computer architecture
695 ## -
-- Computers
695 ## -
-- Connectors
695 ## -
-- Context
695 ## -
-- Control systems
695 ## -
-- Convolution
695 ## -
-- Data preprocessing
695 ## -
-- Data structures
695 ## -
-- Decoding
695 ## -
-- Delay
695 ## -
-- Delay effects
695 ## -
-- Doped fiber amplifiers
695 ## -
-- Dynamics
695 ## -
-- Encoding
695 ## -
-- Equations
695 ## -
-- Feedforward neural networks
695 ## -
-- Filtering theory
695 ## -
-- Finite impulse response filter
695 ## -
-- Grammar
695 ## -
-- Heuristic algorithms
695 ## -
-- History
695 ## -
-- IIR filters
695 ## -
-- Indexes
695 ## -
-- Kernel
695 ## -
-- Knowledge engineering
695 ## -
-- Latches
695 ## -
-- Learning systems
695 ## -
-- Logic gates
695 ## -
-- Logistics
695 ## -
-- Magnetic heads
695 ## -
-- Mathematical model
695 ## -
-- Maximum likelihood detection
695 ## -
-- Natural languages
695 ## -
-- Neurons
695 ## -
-- Noise
695 ## -
-- Nonlinear filters
695 ## -
-- Numerical models
695 ## -
-- Oscillators
695 ## -
-- Personal digital assistants
695 ## -
-- Polynomials
695 ## -
-- Pragmatics
695 ## -
-- Proposals
695 ## -
-- Quantization
695 ## -
-- Real time systems

No items available.