Computational intelligence in bioinformatics / (Record no. 74014)

000 -LEADER
fixed length control field 08725nam a2201165 i 4500
001 - CONTROL NUMBER
control field 5361011
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20220712205723.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 071221t20152007nyua o 000 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9780470199091
-- electronic
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- print
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic
082 04 - CLASSIFICATION NUMBER
Call Number 572.028563
245 00 - TITLE STATEMENT
Title Computational intelligence in bioinformatics /
300 ## - PHYSICAL DESCRIPTION
Number of Pages 1 PDF (xix, 355 pages) :
490 1# - SERIES STATEMENT
Series statement IEEE press series on computational intelligence ;
505 0# - FORMATTED CONTENTS NOTE
Remark 2 Preface -- Contributors -- Part One Gene Expression Analysis and Systems Biology -- 1. Hybrid of Neural Classifi er and Swarm Intelligence in Multiclass Cancer Diagnosis with Gene Expression Signatures (Rui Xu, Georgios C. Anagnostopoulos, and Donald C. Wunsch II) -- 1.1 Introduction -- 1.2 Methods and Systems -- 1.3 Experimental Results -- 1.4 Conclusions -- 2. Classifying Gene Expression Profi les with Evolutionary Computation (Jin-Hyuk Hong and Sung-Bae Cho) -- 2.1 DNA Microarray Data Classifi cation -- 2.2 Evolutionary Approach to the Problem -- 2.3 Gene Selection with Speciated Genetic Algorithm -- 2.4 Cancer Classifi ction Based on Ensemble Genetic Programming -- 2.5 Conclusion -- 3. Finding Clusters in Gene Expression Data Using EvoCluster (Patrick C. H. Ma, Keith C. C. Chan, and Xin Yao) -- 3.1 Introduction -- 3.2 Related Work -- 3.3 Evolutionary Clustering Algorithm -- 3.4 Experimental Results -- 3.5 Conclusions -- 4. Gene Networks and Evolutionary Computation (Jennifer Hallinan) -- 4.1 Introduction -- 4.2 Evolutionary Optimization -- 4.3 Computational Network Modeling -- 4.4 Extending Reach of Gene Networks -- 4.5 Network Topology Analysis -- 4.6 Summary -- Part Two Sequence Analysis and Feature Detection -- 5. Fuzzy-Granular Methods for Identifying Marker Genes from Microarray Expression Data (Yuanchen He, Yuchun Tang, Yan-Qing Zhang, and Rajshekhar Sunderraman) -- 5.1 Introduction -- 5.2 Traditional Algorithms for Gene Selection -- 5.3 New Fuzzy-Granular-Based Algorithm for Gene Selection -- 5.4 Simulation -- 5.5 Conclusions -- 6. Evolutionary Feature Selection for Bioinformatics (Laetitia Jourdan, Clarisse Dhaenens, and El-Ghazali Talbi) -- 6.1 Introduction -- 6.2 Evolutionary Algorithms for Feature Selection -- 6.3 Feature Selection for Clustering in Bioinformatics -- 6.4 Feature Selection for Classifi cation in Bioinformatics -- 6.5 Frameworks and Data Sets -- 6.6 Conclusion -- 7. Fuzzy Approaches for the Analysis CpG Island Methylation Patterns (Ozy Sjahputera, Mihail Popescu, James M. Keller, and Charles W. Caldwell).
505 8# - FORMATTED CONTENTS NOTE
Remark 2 7.1 Introduction -- 7.2 Methods -- 7.3 Biological Signifi cance -- 7.4 Conclusions -- Part Three Molecular Structure and Phylogenetics -- 8. Protein-Ligand Docking with Evolutionary Algorithms(Rene Thomsen) -- 8.1 Introduction -- 8.2 Biochemical Background -- 8.3 The Docking Problem -- 8.4 Protein-Ligand Docking Algorithms -- 8.5 Evolutionary Algorithms -- 8.6 Effect of Variation Operators -- 8.7 Differential Evolution -- 8.8 Evaluating Docking Methods -- 8.9 Comparison between Docking Methods -- 8.10 Summary -- 8.11 Future Research Topics -- 9. RNA Secondary Structure Prediction Employing Evolutionary Algorithms (Kay C. Wiese, Alain A. Deschanes, and Andrew G. Hendriks) -- 9.1 Introduction -- 9.2 Thermodynamic Models -- 9.3 Methods -- 9.4 Results -- 9.5 Conclusion -- 10. Machine Learning Approach for Prediction of Human Mitochondrial Proteins (Zhong Huang, Xuheng Xu, and Xiaohua Hu) -- 10.1 Introduction -- 10.2 Methods and Systems -- 10.3 Results and Discussion -- 10.4 Conclusions -- 11. Phylogenetic Inference Using Evolutionary Algorithms(Clare Bates Congdon) -- 11.1 Introduction -- 11.2 Background in Phylogenetics -- 11.3 Challenges and Opportunities for Evolutionary Computation -- 11.4 One Contribution of Evolutionary Computation: Graphyl -- 11.5 Some Other Contributions of Evolutionary computation -- 11.6 Open Questions and Opportunities -- Part Four Medicine -- 12. Evolutionary Algorithms for Cancer Chemotherapy Optimization (John McCall, Andrei Petrovski, and Siddhartha Shakya) -- 12.1 Introduction -- 12.2 Nature of Cancer -- 12.3 Nature of Chemotherapy -- 12.4 Models of Tumor Growth and Response -- 12.5 Constraints on Chemotherapy -- 12.6 Optimal Control Formulations of Cancer Chemotherapy -- 12.7 Evolutionary Algorithms for Cancer Chemotherapy Optimization -- 12.8 Encoding and Evaluation -- 12.9 Applications of EAs to Chemotherapy Optimization Problems -- 12.10 Related Work -- 12.11 Oncology Workbench -- 12.12 Conclusion -- 13. Fuzzy Ontology-Based Text Mining System for Knowledge Acquisition, Ontology Enhancement, and Query Answering from Biomedical Texts (Lipika Dey and Muhammad Abulaish).
505 8# - FORMATTED CONTENTS NOTE
Remark 2 13.1 Introduction -- 13.2 Brief Introduction to Ontologies -- 13.3 Information Retrieval form Biological Text Documents: Related Work -- 13.4 Ontology-Based IE and Knowledge Enhancement System -- 13.5 Document Processor -- 13.6 Biological Relation Extractor -- 13.7 Relation-Based Query Answering -- 13.8 Evaluation of the Biological Relation Extraction Process -- 13.9 Biological Relation Characterizer -- 13.10 Determining Strengths of Generic Biological Relations -- 13.11 Enhancing GENIA to Fuzzy Relational Ontology -- 13.12 Conclusions and Future Work -- References -- Appendix Feasible Biological Relations -- Index.
520 ## - SUMMARY, ETC.
Summary, etc Combining biology, computer science, mathematics, and statistics, the field of bioinformatics has become a hot new discipline with profound impacts on all aspects of biology and industrial application. Now, Computational Intelligence in Bioinformatics offers an introduction to the topic, covering the most relevant and popular CI methods, while also encouraging the implementation of these methods to readers' research.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Bioinformatics.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Computational intelligence.
700 1# - AUTHOR 2
Author 2 Corne, David.
700 1# - AUTHOR 2
Author 2 Pan, Yi.
700 1# - AUTHOR 2
Author 2 Fogel, Gary,
856 42 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5361011
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- [Hoboken, New Jersey] :
-- Wiley-IEEE,
-- 2007.
264 #2 -
-- [Piscataqay, New Jersey] :
-- IEEE Xplore,
-- [2007]
336 ## -
-- text
-- rdacontent
337 ## -
-- electronic
-- isbdmedia
338 ## -
-- online resource
-- rdacarrier
588 ## -
-- Description based on PDF viewed 12/21/2015.
695 ## -
-- Accuracy
695 ## -
-- Algorithm design and analysis
695 ## -
-- Amino acids
695 ## -
-- Arrays
695 ## -
-- Bioinformatics
695 ## -
-- Biological cells
695 ## -
-- Biological system modeling
695 ## -
-- Biomembranes
695 ## -
-- Cancer
695 ## -
-- Chemicals
695 ## -
-- Cloning
695 ## -
-- Clustering algorithms
695 ## -
-- Computational modeling
695 ## -
-- DNA
695 ## -
-- Drugs
695 ## -
-- Dynamic programming
695 ## -
-- Ellipsoids
695 ## -
-- Encoding
695 ## -
-- Evolution (biology)
695 ## -
-- Evolutionary computation
695 ## -
-- Gene expression
695 ## -
-- Genomics
695 ## -
-- Heart
695 ## -
-- Humans
695 ## -
-- Indexes
695 ## -
-- Liver
695 ## -
-- Lungs
695 ## -
-- Mathematical model
695 ## -
-- Measurement
695 ## -
-- Neurons
695 ## -
-- Noise measurement
695 ## -
-- Ontologies
695 ## -
-- Optimization
695 ## -
-- Particle swarm optimization
695 ## -
-- Peptides
695 ## -
-- Phylogeny
695 ## -
-- Plasmas
695 ## -
-- Prediction algorithms
695 ## -
-- Probes
695 ## -
-- Protein engineering
695 ## -
-- Proteins
695 ## -
-- RNA
695 ## -
-- Sections
695 ## -
-- Space exploration
695 ## -
-- Strain
695 ## -
-- Subspace constraints
695 ## -
-- Support vector machines
695 ## -
-- Thermodynamics
695 ## -
-- Training
695 ## -
-- Tumors
695 ## -
-- Vegetation

No items available.