Power magnetic devices : (Record no. 74336)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 09795nam a2200961 i 4500 |
001 - CONTROL NUMBER | |
control field | 6739362 |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20220712205857.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 151222s2014 njua ob 001 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
ISBN | 9781118824603 |
-- | electronic |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
-- | cloth |
082 00 - CLASSIFICATION NUMBER | |
Call Number | 621.31/042 |
100 1# - AUTHOR NAME | |
Author | Sudhoff, Scott D., |
245 10 - TITLE STATEMENT | |
Title | Power magnetic devices : |
Sub Title | a multi-objective design approach / |
300 ## - PHYSICAL DESCRIPTION | |
Number of Pages | 1 PDF (xiii, 469 pages) : |
490 1# - SERIES STATEMENT | |
Series statement | IEEE press series on power engineering |
505 0# - FORMATTED CONTENTS NOTE | |
Remark 2 | PREFACE XI -- CHAPTER 1 OPTIMIZATION-BASED DESIGN 1 -- 1.1 Design Approach 1 -- 1.2 Mathematical Properties of Objective Functions 3 -- 1.3 Single-Objective Optimization Using Newton's Method 5 -- 1.4 Genetic Algorithms: Review of Biological Genetics 8 -- 1.5 The Canonical Genetic Algorithm 11 -- 1.6 Real-Coded Genetic Algorithms 16 -- 1.7 Multi-Objective Optimization and the Pareto-Optimal Front 27 -- 1.8 Multi-Objective Optimization Using Genetic Algorithms 30 -- 1.9 Formulation of Fitness Functions for Design Problems 34 -- 1.10 A Design Example 36 -- CHAPTER 2 MAGNETICS AND MAGNETIC EQUIVALENT CIRCUITS 45 -- 2.1 Ampere's Law, Magnetomotive Force, and Kirchhoff's MMF Law for Magnetic Circuits 46 -- 2.2 Magnetic Flux, Gauss's Law, and Kirchhoff's Flux Law for Magnetic Circuits 49 -- 2.3 Magnetically Conductive Materials and Ohm's Law for Magnetic Circuits 51 -- 2.4 Construction of the Magnetic Equivalent Circuit 61 -- 2.5 Translation of Magnetic Circuits to Electric Circuits: Flux Linkage and Inductance 64 -- 2.6 Representing Fringing Flux in Magnetic Circuits 70 -- 2.7 Representing Leakage Flux in Magnetic Circuits 75 -- 2.8 Numerical Solution of Nonlinear Magnetic Circuits 88 -- 2.9 Permanent Magnet Materials and Their Magnetic Circuit Representation 104 -- 2.10 Finite Element Analysis 108 -- CHAPTER 3 INTRODUCTION TO INDUCTOR DESIGN 113 -- 3.1 Common Inductor Architectures 113 -- 3.2 DC Coil Resistance 115 -- 3.3 DC Inductor Design 118 -- 3.4 Case Study 125 -- 3.5 Closing Remarks 131 -- CHAPTER 4 FORCE AND TORQUE 133 -- 4.1 Energy Storage in Electromechanical Devices 133 -- 4.2 Calculation of Field Energy 135 -- 4.3 Force from Field Energy 138 -- 4.4 Co-Energy 139 -- 4.5 Force from Co-Energy 143 -- 4.6 Conditions for Conservative Fields 144 -- 4.7 Magnetically Linear Systems 145 -- 4.8 Torque 147 -- 4.9 Calculating Force Using Magnetic Equivalent Circuits 148 -- CHAPTER 5 INTRODUCTION TO ELECTROMAGNET DESIGN 154 -- 5.1 Common Electromagnet Architectures 154. |
505 8# - FORMATTED CONTENTS NOTE | |
Remark 2 | 5.2 Magnetic, Electric, and Force Analysis of an EI-Core Electromagnet 155 -- 5.3 EI-Core Electromagnet Design 165 -- 5.4 Case Study 171 -- CHAPTER 6 MAGNETIC CORE LOSS 178 -- 6.1 Eddy Current Losses 178 -- 6.2 Hysteresis Loss and the B-H Loop 186 -- 6.3 Empirical Modeling of Core Loss 191 -- 6.4 Time Domain Modeling of Core Loss 197 -- CHAPTER 7 TRANSFORMER DESIGN 205 -- 7.1 Common Transformer Architectures 205 -- 7.2 T-Equivalent Circuit Model 207 -- 7.3 Steady-State Analysis 211 -- 7.4 Transformer Performance Considerations 213 -- 7.5 Core-Type Transformer Configuration 223 -- 7.6 Core-Type Transformer MEC 230 -- 7.7 Core Loss 236 -- 7.8 Core-Type Transformer Design 238 -- 7.9 Case Study 245 -- 7.10 Closing Remarks 252 -- CHAPTER 8 DISTRIBUTED WINDINGS AND ROTATING ELECTRIC MACHINERY 254 -- 8.1 Describing Distributed Windings 254 -- 8.2 Winding Functions 265 -- 8.3 Air-Gap Magnetomotive Force 268 -- 8.4 Rotating MMF 272 -- 8.5 Flux Linkage and Inductance 273 -- 8.6 Slot Effects and Carter's Coefficient 276 -- 8.7 Leakage Inductance 278 -- 8.8 Resistance 283 -- 8.9 Introduction to Reference Frame Theory 284 -- 8.10 Expressions for Torque 290 -- CHAPTER 9 INTRODUCTION TO PERMANENT MAGNET AC MACHINE DESIGN 299 -- 9.1 Permanent Magnet Synchronous Machines 299 -- 9.2 Operating Characteristics of PMAC Machines 301 -- 9.3 Machine Geometry 309 -- 9.4 Stator Winding 315 -- 9.5 Material Parameters 318 -- 9.6 Stator Currents and Control Philosophy 319 -- 9.7 Radial Field Analysis 320 -- 9.8 Lumped Parameters 325 -- 9.9 Ferromagnetic Field Analysis 327 -- 9.10 Formulation of Design Problem 333 -- 9.11 Case Study 339 -- 9.12 Extensions 346 -- CHAPTER 10 INTRODUCTION TO THERMAL EQUIVALENT CIRCUITS 349 -- 10.1 Heat Energy, Heat Flow, and the Heat Equation 349 -- 10.2 Thermal Equivalent Circuit of One-Dimensional Heat Flow 352 -- 10.3 Thermal Equivalent Circuit of a Cuboidal Region 359 -- 10.4 Thermal Equivalent Circuit of a Cylindrical Region 363 -- 10.5 Inhomogeneous Regions 370. |
505 8# - FORMATTED CONTENTS NOTE | |
Remark 2 | 10.6 Material Boundaries 377 -- 10.7 Thermal Equivalent Circuit Networks 379 -- 10.8 Case Study: Thermal Model of Electromagnet 385 -- CHAPTER 11 AC CONDUCTOR LOSSES 403 -- 11.1 Skin Effect in Strip Conductors 403 -- 11.2 Skin Effect in Cylindrical Conductors 410 -- 11.3 Proximity Effect in a Single Conductor 414 -- 11.4 Independence of Skin and Proximity Effects 416 -- 11.5 Proximity Effect in a Group of Conductors 418 -- 11.6 Relating Mean-Squared Field and Leakage Permeance 422 -- 11.7 Mean-Squared Field for Select Geometries 423 -- 11.8 Conductor Losses in Rotating Machinery 428 -- 11.9 Conductor Losses in a UI-Core Inductor 432 -- 11.10 Closing Remarks 436 -- References 437 -- Problems 437 -- APPENDIX A CONDUCTOR DATA AND WIRE GAUGES 439 -- APPENDIX B SELECTED FERRIMAGNETIC CORE DATA 441 -- APPENDIX C SELECTED MAGNETIC STEEL DATA 443 -- APPENDIX D SELECTED PERMANENT MAGNET DATA 445 -- APPENDIX E PHASOR ANALYSIS 446 -- APPENDIX F TRIGONOMETRIC IDENTITIES 453 -- INDEX 455. |
520 ## - SUMMARY, ETC. | |
Summary, etc | Presents a multi-objective design approach to the many power magnetic devices in use todayPower Magnetic Devices: A Multi-Objective Design Approach addresses the design of power magnetic devices-including inductors, transformers, electromagnets, and rotating electric machinery-using a structured design approach based on formal single- and multi-objective optimization.The book opens with a discussion of evolutionary-computing-based optimization. Magnetic analysis techniques useful to the design of all the devices considered in the book are then set forth. This material is then used for inductor design so readers can start the design process. Core loss is next considered; this material is used to support transformer design. A chapter on force and torque production feeds into a chapter on electromagnet design. This is followed by chapters on rotating machinery and the design of a permanent magnet AC machine. Finally, enhancements to the design process including thermal analysis and AC conductor losses due to skin and proximity effects are set forth.Power Magnetic Devices:. Focuses on the design process as it relates to power magnetic devices such as inductors, transformers, electromagnets, and rotating machinery. Offers a structured design approach based on single- and multi-objective optimization. Helps experienced designers take advantage of new techniques which can yield superior designs with less engineering time. Provides numerous case studies throughout the book to facilitate readers' comprehension of the analysis and design process. includes Powerpoint-slide-based student and instructor lecture notes and MATLAB-based examples, toolboxes, and design codesDesigned to support the educational needs of students, Power Magnetic Devices: A Multi-Objective Design Approach also serves as a valuable reference tool for practicing engineers and designers. |
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
Subject | Electromagnetic devices. |
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
Subject | Power electronics. |
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
Subject | Electric machinery. |
856 42 - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6739362 |
942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
Koha item type | eBooks |
264 #1 - | |
-- | Hoboken, New Jersey : |
-- | John Wiley & Sons Inc., |
-- | [2014] |
264 #2 - | |
-- | [Piscataqay, New Jersey] : |
-- | IEEE Xplore, |
-- | [2014] |
336 ## - | |
-- | text |
-- | rdacontent |
337 ## - | |
-- | electronic |
-- | isbdmedia |
338 ## - | |
-- | online resource |
-- | rdacarrier |
588 ## - | |
-- | Description based on PDF viewed 12/22/2015. |
695 ## - | |
-- | Conductors |
695 ## - | |
-- | Correlation |
695 ## - | |
-- | Couplings |
695 ## - | |
-- | Detectors |
695 ## - | |
-- | Eddy currents |
695 ## - | |
-- | Fading |
695 ## - | |
-- | Force |
695 ## - | |
-- | Heating |
695 ## - | |
-- | Inductors |
695 ## - | |
-- | Inverters |
695 ## - | |
-- | Iron |
695 ## - | |
-- | Loss measurement |
695 ## - | |
-- | Magnetic circuits |
695 ## - | |
-- | Magnetic hysteresis |
695 ## - | |
-- | Magnetic losses |
695 ## - | |
-- | Magnetic resonance imaging |
695 ## - | |
-- | Magnetics |
695 ## - | |
-- | Materials |
695 ## - | |
-- | Mechanical systems |
695 ## - | |
-- | Noise |
695 ## - | |
-- | Optimization |
695 ## - | |
-- | Proximity effects |
695 ## - | |
-- | Random variables |
695 ## - | |
-- | Rotors |
695 ## - | |
-- | Shafts |
695 ## - | |
-- | Skin effect |
695 ## - | |
-- | Stator cores |
695 ## - | |
-- | Stator windings |
695 ## - | |
-- | Steady-state |
695 ## - | |
-- | Strips |
695 ## - | |
-- | Thermal analysis |
695 ## - | |
-- | Torque |
695 ## - | |
-- | Trajectory |
695 ## - | |
-- | Windings |
No items available.