A New Hypothesis on the Anisotropic Reynolds Stress Tensor for Turbulent Flows (Record no. 75326)

000 -LEADER
fixed length control field 04654nam a22005655i 4500
001 - CONTROL NUMBER
control field 978-3-030-13543-0
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20220801213547.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 190226s2019 sz | s |||| 0|eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9783030135430
-- 978-3-030-13543-0
082 04 - CLASSIFICATION NUMBER
Call Number 620.1064
100 1# - AUTHOR NAME
Author Könözsy, László.
245 12 - TITLE STATEMENT
Title A New Hypothesis on the Anisotropic Reynolds Stress Tensor for Turbulent Flows
Sub Title Volume I: Theoretical Background and Development of an Anisotropic Hybrid k-omega Shear-Stress Transport/Stochastic Turbulence Model /
250 ## - EDITION STATEMENT
Edition statement 1st ed. 2019.
300 ## - PHYSICAL DESCRIPTION
Number of Pages XVII, 141 p. 5 illus., 4 illus. in color.
490 1# - SERIES STATEMENT
Series statement Fluid Mechanics and Its Applications,
505 0# - FORMATTED CONTENTS NOTE
Remark 2 1 Introduction -- 1.1 Historical Background and Literature Review -- 1.2 Governing Equations of Incompressible Turbulent Flows -- 1.3 Summary -- References -- 2 Theoretical Principles and Galilean Invariance -- 2.1 Introduction -- 2.2 Basic Principles of Advanced Turbulence Modelling -- 2.3 Summary -- References -- 3 The k-w Shear-Stress Transport (SST) Turbulence Model -- 3.1 Introduction -- 3.2 Mathematical Derivations -- 3.3 Governing Equations of the k-w SST Turbulence Model -- 3.4 Summary -- References -- 4 Three-Dimensional Anisotropic Similarity Theory of Turbulent Velocity Fluctuations -- 4.1 Introduction -- 4.2 Similarity Theory of Turbulent Oscillatory Motions -- 4.3 Summary -- References -- 5 A New Hypothesis on the Anisotropic Reynolds Stress Tensor -- 5.1 Introduction -- 5.2 The Anisotropic Reynolds Stress Tensor -- 5.3 An Anisotropic Hybrid k-w SST/STM Closure Model for Incompressible Flows -- 5.4 Governing Equations of the Anisotropic Hybrid k-w SST/STM Closure Model -- 5.5 On the Implementation of the Anisotropic Hybrid k-w SST/STM Turbulence Model -- 5.6 Summary -- References -- Appendices: Additional Mathematical Derivations -- A.1 The Unit Base Vectors of the Fluctuating OrthogonalCoordinate System -- A.2 Galilean Invariance of the Unsteady Fluctuating VorticityTransport Equation -- A.3 The Deviatoric Part of the Similarity Tensor.
520 ## - SUMMARY, ETC.
Summary, etc This book gives a mathematical insight--including intermediate derivation steps--into engineering physics and turbulence modeling related to an anisotropic modification to the Boussinesq hypothesis (deformation theory) coupled with the similarity theory of velocity fluctuations. Through mathematical derivations and their explanations, the reader will be able to understand new theoretical concepts quickly, including how to put a new hypothesis on the anisotropic Reynolds stress tensor into engineering practice. The anisotropic modification to the eddy viscosity hypothesis is in the center of research interest, however, the unification of the deformation theory and the anisotropic similarity theory of turbulent velocity fluctuations is still missing from the literature. This book brings a mathematically challenging subject closer to graduate students and researchers who are developing the next generation of anisotropic turbulence models. Indispensable for graduate students, researchers and scientists in fluid mechanics and mechanical engineering.
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://doi.org/10.1007/978-3-030-13543-0
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Cham :
-- Springer International Publishing :
-- Imprint: Springer,
-- 2019.
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
347 ## -
-- text file
-- PDF
-- rda
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Fluid mechanics.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Continuum mechanics.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Mathematics—Data processing.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Probabilities.
650 14 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Engineering Fluid Dynamics.
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Continuum Mechanics.
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Computational Science and Engineering.
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Probability Theory.
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
-- 2215-0056 ;
912 ## -
-- ZDB-2-ENG
912 ## -
-- ZDB-2-SXE

No items available.