Visual Knowledge Discovery and Machine Learning (Record no. 79637)

000 -LEADER
fixed length control field 03285nam a22005175i 4500
001 - CONTROL NUMBER
control field 978-3-319-73040-0
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20220801221416.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 180118s2018 sz | s |||| 0|eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9783319730400
-- 978-3-319-73040-0
082 04 - CLASSIFICATION NUMBER
Call Number 006.3
100 1# - AUTHOR NAME
Author Kovalerchuk, Boris.
245 10 - TITLE STATEMENT
Title Visual Knowledge Discovery and Machine Learning
250 ## - EDITION STATEMENT
Edition statement 1st ed. 2018.
300 ## - PHYSICAL DESCRIPTION
Number of Pages XXI, 317 p. 274 illus., 263 illus. in color.
490 1# - SERIES STATEMENT
Series statement Intelligent Systems Reference Library,
505 0# - FORMATTED CONTENTS NOTE
Remark 2 Motivation, Problems and Approach -- General Line Coordinates (GLC) -- Theoretical and Mathematical Basis of GLC -- Adjustable GLCs for decreasing occlusion and pattern simplification -- GLC Case Studies -- Discovering visual features and shape perception capabilities in GLC -- Interactive Visual Classification, Clustering and Dimension Reduction with GLC-L -- Knowledge Discovery and Machine Learning for Investment Strategy with CPC.
520 ## - SUMMARY, ETC.
Summary, etc This book combines the advantages of high-dimensional data visualization and machine learning in the context of identifying complex n-D data patterns. It vastly expands the class of reversible lossless 2-D and 3-D visualization methods, which preserve the n-D information. This class of visual representations, called the General Lines Coordinates (GLCs), is accompanied by a set of algorithms for n-D data classification, clustering, dimension reduction, and Pareto optimization. The mathematical and theoretical analyses and methodology of GLC are included, and the usefulness of this new approach is demonstrated in multiple case studies. These include the Challenger disaster, world hunger data, health monitoring, image processing, text classification, market forecasts for a currency exchange rate, computer-aided medical diagnostics, and others. As such, the book offers a unique resource for students, researchers, and practitioners in the emerging field of Data Science.
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://doi.org/10.1007/978-3-319-73040-0
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Cham :
-- Springer International Publishing :
-- Imprint: Springer,
-- 2018.
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
347 ## -
-- text file
-- PDF
-- rda
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Computational intelligence.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Artificial intelligence.
650 14 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Computational Intelligence.
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Artificial Intelligence.
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
-- 1868-4408 ;
912 ## -
-- ZDB-2-ENG
912 ## -
-- ZDB-2-SXE

No items available.