Dense Image Correspondences for Computer Vision (Record no. 79881)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 03963nam a22005775i 4500 |
001 - CONTROL NUMBER | |
control field | 978-3-319-23048-1 |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20220801221631.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 151121s2016 sz | s |||| 0|eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
ISBN | 9783319230481 |
-- | 978-3-319-23048-1 |
082 04 - CLASSIFICATION NUMBER | |
Call Number | 621.382 |
245 10 - TITLE STATEMENT | |
Title | Dense Image Correspondences for Computer Vision |
250 ## - EDITION STATEMENT | |
Edition statement | 1st ed. 2016. |
300 ## - PHYSICAL DESCRIPTION | |
Number of Pages | XII, 295 p. 152 illus., 146 illus. in color. |
505 0# - FORMATTED CONTENTS NOTE | |
Remark 2 | Introduction to Dense Optical Flow -- SIFT Flow: Dense Correspondence across Scenes and its Applications -- Dense, Scale-Less Descriptors -- Scale-Space SIFT Flow -- Dense Segmentation-aware Descriptors -- SIFTpack: A Compact Representation for Efficient SIFT Matching -- In Defense of Gradient-Based Alignment on Densely Sampled Sparse Features -- From Images to Depths and Back -- DepthTransfer: Depth Extraction from Video Using Non-parametric Sampling -- Joint Inference in Image Datasets via Dense Correspondence -- Dense Correspondences and Ancient Texts. |
520 ## - SUMMARY, ETC. | |
Summary, etc | This book describes the fundamental building-block of many new computer vision systems: dense and robust correspondence estimation. Dense correspondence estimation techniques are now successfully being used to solve a wide range of computer vision problems, very different from the traditional applications such techniques were originally developed to solve. This book introduces the techniques used for establishing correspondences between challenging image pairs, the novel features used to make these techniques robust, and the many problems dense correspondences are now being used to solve. The book provides information to anyone attempting to utilize dense correspondences in order to solve new or existing computer vision problems. The editors describe how to solve many computer vision problems by using dense correspondence estimation. Finally, it surveys resources, code, and data necessary for expediting the development of effective correspondence-based computer vision systems. · Provides in-depth coverage of dense-correspondence estimation · Covers both the breadth and depth of new achievements in dense correspondence estimation and their applications · Includes information for designing computer vision systems that rely on efficient and robust correspondence estimation . |
700 1# - AUTHOR 2 | |
Author 2 | Hassner, Tal. |
700 1# - AUTHOR 2 | |
Author 2 | Liu, Ce. |
856 40 - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | https://doi.org/10.1007/978-3-319-23048-1 |
942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
Koha item type | eBooks |
264 #1 - | |
-- | Cham : |
-- | Springer International Publishing : |
-- | Imprint: Springer, |
-- | 2016. |
336 ## - | |
-- | text |
-- | txt |
-- | rdacontent |
337 ## - | |
-- | computer |
-- | c |
-- | rdamedia |
338 ## - | |
-- | online resource |
-- | cr |
-- | rdacarrier |
347 ## - | |
-- | text file |
-- | |
-- | rda |
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
-- | Signal processing. |
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
-- | Computer vision. |
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
-- | Artificial intelligence. |
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
-- | Telecommunication. |
650 14 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
-- | Signal, Speech and Image Processing . |
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
-- | Computer Vision. |
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
-- | Artificial Intelligence. |
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1 | |
-- | Communications Engineering, Networks. |
912 ## - | |
-- | ZDB-2-ENG |
912 ## - | |
-- | ZDB-2-SXE |
No items available.