The Navier-Stokes Problem (Record no. 84703)

000 -LEADER
fixed length control field 03444nam a22005175i 4500
001 - CONTROL NUMBER
control field 978-3-031-02431-3
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240730163526.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 220601s2021 sz | s |||| 0|eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9783031024313
-- 978-3-031-02431-3
082 04 - CLASSIFICATION NUMBER
Call Number 510
100 1# - AUTHOR NAME
Author Ramm, Alexander G.
245 14 - TITLE STATEMENT
Title The Navier-Stokes Problem
250 ## - EDITION STATEMENT
Edition statement 1st ed. 2021.
300 ## - PHYSICAL DESCRIPTION
Number of Pages XV, 61 p.
490 1# - SERIES STATEMENT
Series statement Synthesis Lectures on Mathematics & Statistics,
505 0# - FORMATTED CONTENTS NOTE
Remark 2 Preface -- Introduction -- Brief History of the Navier-Stokes Problem -- Statement of the Navier-Stokes Problem -- Theory of Some Hyper-Singular Integral Equations -- A Priori Estimates of the Solution to the NSP -- Uniqueness of the Solution to the NSP -- The Paradox and its Consequences -- Logical Analysis of Our Proof -- Appendix 1 - Theory of Distributions and Hyper-Singular Integrals -- Appendix 2 - Gamma and Beta Functions -- Appendix 3 - The Laplace Transform -- Bibliography -- Author's Biography.
520 ## - SUMMARY, ETC.
Summary, etc The main result of this book is a proof of the contradictory nature of the Navier‒Stokes problem (NSP). It is proved that the NSP is physically wrong, and the solution to the NSP does not exist on ℝ+ (except for the case when the initial velocity and the exterior force are both equal to zero; in this case, the solution ����(����, ����) to the NSP exists for all ���� ≥ 0 and ����(����, ����) = 0). It is shown that if the initial data ����0(����) ≢ 0, ����(����,����) = 0 and the solution to the NSP exists for all ���� ϵ ℝ+, then ����0(����) := ����(����, 0) = 0. This Paradox proves that the NSP is physically incorrect and mathematically unsolvable, in general. Uniqueness of the solution to the NSP in the space ����21(ℝ3) × C(ℝ+) is proved, ����21(ℝ3) is the Sobolev space, ℝ+ = [0, ∞). Theory of integral equations and inequalities with hyper-singular kernels is developed. The NSP is reduced to an integral inequality with a hyper-singular kernel.
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://doi.org/10.1007/978-3-031-02431-3
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Cham :
-- Springer International Publishing :
-- Imprint: Springer,
-- 2021.
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
347 ## -
-- text file
-- PDF
-- rda
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Mathematics.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Statistics .
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Engineering mathematics.
650 14 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Mathematics.
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Statistics.
650 24 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Engineering Mathematics.
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
-- 1938-1751
912 ## -
-- ZDB-2-SXSC

No items available.