Despeckle Filtering Algorithms and Software for Ultrasound Imaging (Record no. 86093)

000 -LEADER
fixed length control field 04253nam a22004935i 4500
001 - CONTROL NUMBER
control field 978-3-031-01510-6
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240730165107.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 221116s2008 sz | s |||| 0|eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9783031015106
-- 978-3-031-01510-6
082 04 - CLASSIFICATION NUMBER
Call Number 621.382
100 1# - AUTHOR NAME
Author Loizou, Christos.
245 10 - TITLE STATEMENT
Title Despeckle Filtering Algorithms and Software for Ultrasound Imaging
250 ## - EDITION STATEMENT
Edition statement 1st ed. 2008.
300 ## - PHYSICAL DESCRIPTION
Number of Pages IV, 166 p.
490 1# - SERIES STATEMENT
Series statement Synthesis Lectures on Algorithms and Software in Engineering,
505 0# - FORMATTED CONTENTS NOTE
Remark 2 Introduction to Ultrasound Imaging -- Despeckle Filtering Algorithms -- Evaluation Methodology -- Applications of Despeckle Filtering in Ultrasound Imaging -- Comparison and Discussion of Despeckle Filtering Algorithms -- Summary and Future Directions.
520 ## - SUMMARY, ETC.
Summary, etc It is well-known that speckle is a multiplicative noise that degrades image quality and the visual evaluation in ultrasound imaging. This necessitates the need for robust despeckling techniques for both routine clinical practice and teleconsultation. The goal for this book is to introduce the theoretical background (equations), the algorithmic steps, and the MATLAB™ code for the following group of despeckle filters: linear filtering, nonlinear filtering, anisotropic diffusion filtering and wavelet filtering. The book proposes a comparative evaluation framework of these despeckle filters based on texture analysis, image quality evaluation metrics, and visual evaluation by medical experts, in the assessment of cardiovascular ultrasound images recorded from the carotid artery. The results of our work presented in this book, suggest that the linear local statistics filter DsFlsmv, gave the best performance, followed by the nonlinear geometric filter DsFgf4d, and the linear homogeneous maskarea filter DsFlsminsc. These filters improved the class separation between the asymptomatic and the symptomatic classes (of ultrasound images recorded from the carotid artery for the assessment of stroke) based on the statistics of the extracted texture features, gave only a marginal improvement in the classification success rate, and improved the visual assessment carried out by two medical experts. A despeckle filtering analysis and evaluation framework is proposed for selecting the most appropriate filter or filters for the images under investigation. These filters can be further developed and evaluated at a larger scale and in clinical practice in the automated image and video segmentation, texture analysis, and classification not only for medical ultrasound but for other modalities as well, such as synthetic aperture radar (SAR) images. Table of Contents: Introduction to Ultrasound Imaging / Despeckle Filtering Algorithms / Evaluation Methodology / Applications of Despeckle Filtering in Ultrasound Imaging / Comparison and Discussion of Despeckle Filtering Algorithms / Summary and Future Directions.
700 1# - AUTHOR 2
Author 2 Pattichis, Constantinos.
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://doi.org/10.1007/978-3-031-01510-6
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Cham :
-- Springer International Publishing :
-- Imprint: Springer,
-- 2008.
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
347 ## -
-- text file
-- PDF
-- rda
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Signal processing.
650 14 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Signal, Speech and Image Processing.
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
-- 1938-1735
912 ## -
-- ZDB-2-SXSC

No items available.