Extreme Learning Machines 2013: Algorithms and Applications [electronic resource] / edited by Fuchen Sun, Kar-Ann Toh, Manuel Grana Romay, Kezhi Mao.
Contributor(s): Sun, Fuchen [editor.] | Toh, Kar-Ann [editor.] | Romay, Manuel Grana [editor.] | Mao, Kezhi [editor.] | SpringerLink (Online service).
Material type: BookSeries: Adaptation, Learning, and Optimization: 16Publisher: Cham : Springer International Publishing : Imprint: Springer, 2014Description: VI, 225 p. 100 illus., 74 illus. in color. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783319047416.Subject(s): Engineering | Artificial intelligence | Computational intelligence | Engineering | Computational Intelligence | Artificial Intelligence (incl. Robotics)Additional physical formats: Printed edition:: No titleDDC classification: 006.3 Online resources: Click here to access onlineFreshwater Algal Bloom Prediction by Extreme Learning Machine in Macau Storage Reservoirs -- A Novel Scene Based Robust Video Watermarking Scheme in DWT Domain Using Extreme Learning Machine -- Stochastic Sensitivity Analysis using Extreme Learning Machine.
In recent years, ELM has emerged as a revolutionary technique of computational intelligence, and has attracted considerable attentions. An extreme learning machine (ELM) is a single layer feed-forward neural network alike learning system, whose connections from the input layer to the hidden layer are randomly generated, while the connections from the hidden layer to the output layer are learned through linear learning methods. The outstanding merits of extreme learning machine (ELM) are its fast learning speed, trivial human intervene and high scalability. This book contains some selected papers from the International Conference on Extreme Learning Machine 2013, which was held in Beijing China, October 15-17, 2013. This conference aims to bring together the researchers and practitioners of extreme learning machine from a variety of fields including artificial intelligence, biomedical engineering and bioinformatics, system modelling and control, and signal and image processing, to promote research and discussions of "learning without iterative tuning". This book covers algorithms and applications of ELM. It gives readers a glance of the newest developments of ELM. .
There are no comments for this item.