Graph partitioning and graph clustering : [electronic resource] 10th DIMACS Implementation Challenge Workshop, February 13-14, 2012, Georgia Institute of Technology, Atlanta, GA / David A. Bader, Henning Meyerhenke, Peter Sanders, Dorothea Wagner, editors.
By: (10th : DIMACS Implementation Challenge Workshop (10th : 2012 : Atlanta, Ga.).
Contributor(s): Bader, David A [editor of compilation.] | Meyerhenke, Henning [editor of compilation.] | Sanders, Peter [editor of compilation.] | Wagner, Dorothea [editor of compilation.].
Material type:
Includes bibliographical references.
High quality graph partitioning / Peter Sanders and Christian Schulz -- Abusing a hypergraph partitioner for unweighted graph partitioning / B. O. Fagginger Auer and R. H. Bisseling -- Parallel partitioning with Zoltan: Is hypergraph partitioning worth it? / Sivasankaran Rajamanickam and Erik G. Boman -- UMPa: A multi-objective, multi-level partitioner for communication minimization / �Umit V. �Cataly�urek, Mehmet Deveci, Kamer Kaya and Bora U�car -- Shape optimizing load balancing for MPI-parallel adaptive numerical simulations / Henning Meyerhenke -- Graph partitioning for scalable distributed graph computations / Ayd�n Bulu�c and Kamesh Madduri -- Using graph partitioning for efficient network modularity optimization / Hristo Djidjev and Melih Onus -- Modularity maximization in networks by variable neighborhood search / Daniel Aloise, Gilles Caporossi, Pierre Hansen, Leo Liberti, Sylvain Perron and Manuel Ruiz -- Network clustering via clique relaxations: A community based approach / Anurag Verma and Sergiy Butenko -- Identifying base clusters and their application to maximizing modularity / Sriram Srinivasan, Tanmoy Chakraborty and Sanjukta Bhowmick -- Complete hierarchical cut-clustering: A case study on expansion and modularity / Michael Hamann, Tanja Hartmann and Dorothea Wagner -- A partitioning-based divisive clustering technique for maximizing the modularity / �Umit V. �Cataly�urek, Kamer Kaya, Johannes Langguth and Bora U�car -- An ensemble learning strategy for graph clustering / Michael Ovelg�onne and Andreas Geyer-Schulz -- Parallel community detection for massive graphs / E. Jason Riedy, Henning Meyerhenke, David Ediger and David A. Bader -- Graph coarsening and clustering on the GPU / B. O. Fagginger Auer and R. H. Bisseling --
http://dx.doi.org/10.1090/conm/588/11700
http://dx.doi.org/10.1090/conm/588/11707
http://dx.doi.org/10.1090/conm/588/11711
http://dx.doi.org/10.1090/conm/588/11704
http://dx.doi.org/10.1090/conm/588/11699
http://dx.doi.org/10.1090/conm/588/11709
http://dx.doi.org/10.1090/conm/588/11713
http://dx.doi.org/10.1090/conm/588/11705
http://dx.doi.org/10.1090/conm/588/11702
http://dx.doi.org/10.1090/conm/588/11708
http://dx.doi.org/10.1090/conm/588/11710
http://dx.doi.org/10.1090/conm/588/11712
http://dx.doi.org/10.1090/conm/588/11701
http://dx.doi.org/10.1090/conm/588/11703
http://dx.doi.org/10.1090/conm/588/11706
Access is restricted to licensed institutions
Electronic reproduction. Providence, Rhode Island : American Mathematical Society. 2013
Mode of access : World Wide Web
Description based on print version record.
There are no comments for this item.