Fractal geometry and dynamical systems in pure and applied mathematics / [electronic resource] David Carfi, Michel L. Lapidus, Erin P.J. Pearse, Machiel van Frankenhuijsen, editors.
By: PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics (2011 : Messina, Italy).
Contributor(s): Carfi, David | Lapidus, Michel L. (Michel Laurent) | Pearse, Erin P. J | Van Frankenhuysen, Machiel | Mandelbrot, Benoit B.
Material type: BookSeries: Contemporary mathematics, v. 601.Publisher: Providence, Rhode Island : American Mathematical Society, [2013]Copyright date: �A�2013Description: 1 online resource (2 volumes : illustrations).Content type: text Media type: unmediated Carrier type: volumeISBN: 9781470410834 (online).Subject(s): Fractals -- Congresses | Measure and integration -- Classical measure theory -- Contents, measures, outer measures, capacities | Measure and integration -- Classical measure theory -- Hausdorff and packing measures | Measure and integration -- Classical measure theory -- Fractals | Number theory -- Zeta and $L$-functions: analytic theory -- Nonreal zeros of $\zeta (s)$ and $L(s, \chi)$; Riemann and other hypotheses | Number theory -- Zeta and $L$-functions: analytic theory -- Other Dirichlet series and zeta functions | Dynamical systems and ergodic theory -- Ergodic theory -- Relations with number theory and harmonic analysis | Dynamical systems and ergodic theory -- Smooth dynamical systems: general theory -- Dimension theory of dynamical systems | Dynamical systems and ergodic theory -- Complex dynamical systems -- Polynomials; rational maps; entire and meromorphic functions | Global analysis, analysis on manifolds -- Infinite-dimensional manifolds -- Riemannian, Finsler and other geometric structures | Global analysis, analysis on manifolds -- Calculus on manifolds; nonlinear operators -- Spectral theory; eigenvalue problemsAdditional physical formats: Fractal geometry and dynamical systems in pure and applied mathematics /DDC classification: 514/.742 Other classification: 28A12 | 28A78 | 28A80 | 11M26 | 11M41 | 37A45 | 37C45 | 37F10 | 58B20 | 58C40 Online resources: Contents | Contents"PISRS 2011, First International Conference : Analysis, Fractal Geometry, Dynamical Systems and Economics, November 8-12, 2011, Messina, Sicily, Italy."
"AMS Special Session, in memory of Benoit Mandelbrot : Fractal Geometry in Pure and Applied Mathematics, January 4-7, 2012, Boston, MA."
"AMS Special Session : Geometry and Analysis on Fractal Spaces, March 3-4, 2012, Honolulu, HI."
Includes bibliographical references.
Statistical Mechanics and Quantum Fields on Fractals / Eric Akkermans -- Spectral Algebra of the Chernov and Bogoslovsky Finsler Metric Tensors / Vladimir Balan -- Local Multifractal Analysis / Julien Barral, Arnaud Durand, St�ephane Jaffard and St�ephane Seuret -- Extreme Risk and Fractal Regularity in Finance / Laurent E. Calvet and Adlai J. Fisher -- An Algorithm for Dynamical Games with Fractal-Like Trajectories / David Carf�i and Angela Ricciardello -- The Landscape of Anderson Localization in a Disordered Medium / Marcel Filoche and Svitlana Mayboroda -- Zeta Functions for Infinite Graphs and Functional Equations / Daniele Guido and Tommaso Isola -- Vector Analysis on Fractals and Applications / Michael Hinz and Alexander Teplyaev -- Non-Regularly Varying and Non-Periodic Oscillation of the On-Diagonal Heat Kernels on Self-Similar Fractals / Naotaka Kajino -- Lattice Effects in the Scaling Limit of the Two-Dimensional Self-Avoiding Walk / Tom Kennedy and Gregory F. Lawler -- The Casimir Effect on Laakso Spaces / Robert Kesler and Benjamin Steinhurst -- The Decimation Method for Laplacians on Fractals: Spectra and Complex Dynamics / Nishu Lal and Michel L. Lapidus -- The Current State of Fractal Billiards / Michel L. Lapidus and Robert G. Niemeyer -- Long-Range Dependence and the Rank of Decompositions / C�eline L�evy-Leduc and Murad S. Taqqu -- Hitting Probabilities of the Random Covering Sets / Bing Li, Narn-Rueih Shieh and Yimin Xiao -- Fractal Oscillations Near the Domain Boundary of Radially Symmetric Solutions of $p$-Laplace Equations / Y�uki Naito, Mervan Pa�si�c, Satoshi Tanaka and Darko �Zubrini�c -- Applications of the Contraction Mapping Principle / John R. Quinn -- Economics and Psychology. Perfect Rationality versus Bounded Rationality / Daniele Schilir�o --
http://dx.doi.org/10.1090/conm/601/11962
http://dx.doi.org/10.1090/conm/601/11943
http://dx.doi.org/10.1090/conm/601/11919
http://dx.doi.org/10.1090/conm/601/11933
http://dx.doi.org/10.1090/conm/601/11961
http://dx.doi.org/10.1090/conm/601/11916
http://dx.doi.org/10.1090/conm/601/11914
http://dx.doi.org/10.1090/conm/601/11960
http://dx.doi.org/10.1090/conm/601/11935
http://dx.doi.org/10.1090/conm/601/11958
http://dx.doi.org/10.1090/conm/601/11954
http://dx.doi.org/10.1090/conm/601/11959
http://dx.doi.org/10.1090/conm/601/11956
http://dx.doi.org/10.1090/conm/601/11915
http://dx.doi.org/10.1090/conm/601/11934
http://dx.doi.org/10.1090/conm/601/11912
http://dx.doi.org/10.1090/conm/601/11957
http://dx.doi.org/10.1090/conm/601/11955
Access is restricted to licensed institutions
Electronic reproduction. Providence, Rhode Island : American Mathematical Society. 2013
Mode of access : World Wide Web
Description based on print version record.
There are no comments for this item.