Meshing, geometric modeling and numerical simulation. 1, Form functions, triangulations and geometric modeling / Houman Borouchaki, Paul Louis George.
By: Borouchaki, Houman [author.].
Contributor(s): George, Paul L [author.].
Material type: BookSeries: Numerical methods in engineering seriesGeometric modeling and applications set: v. 1.Publisher: London : Hoboken, NJ : ISTE Ltd. ; John Wiley & Sons, Inc., 2017Description: 1 online resource : illustrations.Content type: text Media type: computer Carrier type: online resourceISBN: 9781119384038; 1119384036; 9781119384335; 1119384338; 1786300389; 9781786300386; 9781119384045; 1119384044.Subject(s): Geometry -- Data processing | Numerical grid generation (Numerical analysis) | Mathematical models | Finite element method | Triangulation | MATHEMATICS -- Geometry -- General | Finite element method | Geometry -- Data processing | Mathematical models | Numerical grid generation (Numerical analysis) | TriangulationGenre/Form: Electronic books.Additional physical formats: Print version :: No titleDDC classification: 516/.00285 Online resources: Wiley Online LibraryIncludes bibliographical references and index.
Online resource; title from PDF title page (EBSCO, viewed November 03, 2017).
<Div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">Chapter 1. Introduction <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">Chapter 2. Finite elements and shape functions <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">Chapter 3. Lagrange and Bézier interpolation <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">Chapter 4. Geometrical elements and geometrical validity <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">Chapter 5. Triangulation <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">Chapter 6.
Delaunay Triangulation <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">Chapter 7. Triangulation and Constraints <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">Chapter 8. Geometrical modeling <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">Chapter 9. Metric, definitions and proprieties <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">Chapter 10. Errors and metric interpolation <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">Chapter 11. Conclusions and perspectives 1. Finite Elements and Shape Functions. 2. Lagrange and Bézier Interpolants. 3.
Owing to Legal Deposit regulations this resource may only be accessed from within National Library of Scotland on library computers. For more information contact enquiries@nls.uk. StEdNL
Triangulations, and more precisely meshes, are at the heart of many problems relating to a wide variety of scientific disciplines, and in particular numerical simulations of all kinds of physical phenomena. In numerical simulations, the functional spaces of approximation used to search for solutions are defined from meshes, and in this sense these meshes play a fundamental role. This strong link between the meshes and functional spaces leads us to consider advanced simulation methods in which the meshes are adapted to the behaviors of the underlying physical phenomena. This book presents the basic elements of this meshing vision.
There are no comments for this item.