Normal view MARC view ISBD view

Air bearings : theory, design and applications / Farid Al-Bender.

By: Al-Bender, Farid [author.].
Material type: materialTypeLabelBookSeries: Tribology in practice series.Publisher: Hoboken, NJ, USA : Wiley, 2020Description: 1 online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9781118926444; 1118926447; 9781118926567; 1118926560; 9781118927236; 1118927230.Subject(s): Gas-lubricated bearings | Gas-lubricated bearingsGenre/Form: Electronic books.Additional physical formats: Print version:: Air bearingsDDC classification: 621.8/22 Online resources: Wiley Online Library
Contents:
<P>List of contributors</p> <p>List of Tables</p> <p>List of Figures</p> <p>Preface</p> <p>Nomenclature</p> <p>1. Introduction</p> <p>1.1 Gas lubrication in perspective</p> <p>1.1.1 Short history</p> <p>1.2 Capabilities and limitations of gas lubrication</p> <p>1.3 When is the use of air bearings pertinent</p> <p>1.4 Situation of the present work</p> <p>1.5 Classification of air bearings for analysis purposes</p> <p>1.6 Structure of the book 1</p> <p>References</p> <p>2 .General Formulation and Modelling</p> <p>2.1 Introduction</p> <p>2.1.1 Qualitative description of the flow</p> <p>2.2 Basic equations of the flow</p> <p>2.2.1 Continuity equation</p> <p>2.2.2 Navier-Stokes momentum equation</p> <p>2.2.3 The (thermodynamic) Energy equation</p> <p>2.2.4 Equation of State</p> <p>2.2.5 Auxiliary conditions</p> <p>2.2.6 Comment on the solution of the flow problem</p> <p>2.3 Simplification of the flow equations</p> <p>2.3.1 Fluid properties and body forces</p> <p>2.3.2 Truncation of the flow equations</p> <p>2.3.3 Film flow (or channel flow)</p> <p>2.4 Formulation of bearing flow and pressure models</p> <p>2.4.1 The quasi-static flow model for axisymmetric EP bearing</p> <p>2.4.2 The Reynolds plus restrictor model</p> <p>2.5 The basic bearing characteristics</p> <p>2.5.1 The load carrying capacity</p> <p>2.5.2 The axial stiffness</p> <p>2.5.3 The feed mass flow rate</p> <p>2.5.4 The mass flow rate in the viscous region</p> <p>2.5.5 The tangential resistive, "friction" force</p> <p>2.6 Normalization and similitude</p> <p>2.6.1 The axisymmetric flow problem</p> <p>2.6.2 Geometry</p> <p>2.6.3 Dimensionless parameters and similitude</p> <p>2.6.4 The Reynolds equation</p> <p>2.6.5 The bearing characteristics</p> <p>2.6.6 Static similarity of two bearings</p> <p>2.7 Methods of solution</p> <p>2.7.1 Analytic methods</p> <p>2.7.2 Semi-analytic Methods</p> <p>2.7.3 Purely numerical methods</p> <p>2.8 Summary</p> <p>References</p> <p>3. Flow into the bearing gap</p> <p>3.1 Introduction</p> <p>3.2 Entrance to a parallel channel (gap) with stationary, parallel walls</p> <p>3.2.1 Analysis of flow development</p> <p>3.3 Results and discussion</p> <p>3.3.1 Limiting cases</p> <p>3.3.2 Method of solution</p> <p>3.3.3 Determination of the entrance length into a plane channel</p> <p>3.4 The case of radial flow of a polytropically compressible fluid between nominally parallel plates</p> <p>3.4.1 Conclusions on pressure-fed entrance</p> <p>3.5 Narrow channel entrance by shear-induced flow</p> <p>3.5.1 Stability of viscous laminar flow at the entrance</p> <p>3.5.2 Development of the flow upstream of a slider bearing</p> <p>3.5.3 Development of the flow downstream of the gap entrance</p> <p>3.5.4 Method of solution</p> <p>3.5.5 Conclusions regarding shear-induced entrance flow</p> <p>3.6 Summary</p> <p>References</p> <p>4. Reynolds Equation: Derivation, forms and interpretations</p> <p>4.1 Introduction</p> <p>4.2 The Reynolds equation</p> <p>4.3 The Reynolds Equation for various film/bearing arrangements and coordinate systems</p> <p>4.3.1 Cartesian coordinates (x; y)</p> <p>4.3.2 Plain polar coordinates (r; -)</p> <p>4.3.3 Cylinderical coordinates (z; -) with constant R</p> <p>4.3.4 Conical coordinates (r; -) (- = -- = constant)</p> <p>4.3.5 Spherical coordinates (-; -) (r = R = constant)</p> <p>4.4 Interpretation of the Reynolds Equation when both surfaces are moving and not flat</p> <p>4.4.1 Stationary inclined upper surface, sliding lower member</p> <p>4.4.2 Pure surface motion</p> <p>4.4.3 Inclined moving upper surface with features</p> <p>4.4.4 Moving periodic feature on one or both surfaces</p> <p>4.5 Neglected flow effects</p> <p>4.6 Wall smoothness effects</p> <p>4.6.1 Effect of surface roughness</p> <p>4.7 Slip at the walls</p> <p>4.8 Turbulence</p> <p>4.8.1 Formulation</p> <p>4.9 Approximate methods for incorporating the convective terms in integral flow formulations and the modified Reynolds Equation</p> <p>4.9.1 Introduction</p> <p>4.9.2 Analysis</p> <p>4.9.3 Limiting solution: the Reynolds equation</p> <p>4.9.4 Approximate solutions to steady channel entrance problems</p> <p>4.9.5 Approximation of convective terms by averaging: the modified Reynolds Equation</p> <p>4.9.6 Approximation of convective terms by averaging in turbulent flow</p> <p>4.9.7 summary</p> <p>4.10 Closure</p> <p>References</p> <p>5. Modelling of Radial Flow in Externally Pressurised Bearings</p> <p>5.1 Introduction</p> <p>5.2 Radial flow in the gap and its modelling</p> <p>5.3 Lumped parameter models</p> <p>5.3.1 The orifice/nozzle formula</p> <p>5.3.2 Vohr's correlation formula</p> <p>5.4 Short review of other methods</p> <p>5.4.1 Approximation of the inertia (or convective) terms</p> <p>5.4.2 The momentum integral method</p> <p>5.4.3 Series expansion</p> <p>5.4.4 Pure numerical solutions</p> <p>5.5 Application of the method of "separation of variables"</p> <p>5.5.1 Boundary conditions on I</p> <p>5.5.2 Flow from stagnation to gap entrance</p> <p>5.5.3 The density function in the gap</p> <p>5.5.4 Solution procedure</p> <p>5.6 Results and discussion</p> <p>5.6.1 Qualitative trends</p> <p>5.6.2 Comparison with experiments</p> <p>5.7 Other comparisons</p> <p>5.8 Formulation of a lumped-parameter inherent compensator model</p> <p>5.8.1 The entrance coefficient of discharge</p> <p>5.8.2 Calculation of Cd</p> <p>5.8.3 The normalized inlet flow rate</p> <p>5.8.4 Solution of the static axisymmetric bearing problem by the Reynolds/compensator model</p> <p>5.9 Summary</p> <p>References</p> <p>6. Basic Characteristics of Circular Centrally Fed Aerostatic Bearings</p> <p>6.1 Introduction</p> <p>6.2 Axial characteristics: Load, stiffness and flow</p> <p>6.2.1 Determination of the pressure distribution</p> <p>6.2.2 Typical results</p> <p>6.2.3 Characteristics with given supply pressure</p> <p>6.2.4 Conclusions on axial characteristics</p> <p>6.3 Tilt and misalignment characteristics (Al-Bender 1992; Al-Bender and</p> <p>Van Brussel 1992)</p> <p>6.3.1 Analysis</p> <p>6.3.2 Theoretical results</p> <p>6.3.3 Experimental investigation</p> <p>6.3.4 Results, comparison and discussion</p> <p>6.3.5 Conclusions on tilt</p> <p>6.4 The influence of relative sliding velocity on aerostatic bearing characteristics</p> <p>(Al-Bender 1992)</p> <p>6.4.1 Formulation of the problem</p> <p>6.4.2 Qualitative considerations of the influence of relative velocity</p> <p>6.4.3 Solution method</p> <p>6.4.4 Results and discussion</p> <p>6.4.5 Conclusions on relative sliding</p> <p>6.5 Summary</p> <p>References</p> <p>7. Dynamic Characteristics of Circular Centrally Fed Aerostatic Bearing Films, and the Problem of Pneumatic Stability</p> <p>7.1 Introduction</p> <p>7.1.1 Pneumatic instability</p> <p>7.1.2 Squeeze film</p> <p>7.1.3 Active compensation</p> <p>7.1.4 Objeetives and layout of this study</p> <p>7.2 Review of past treatments</p> <p>7.2.1 Models and theory</p> <p>7.2.2 System analysis tools and stability criteria</p> <p>7.2.3 Methods of stabilization</p> <p>7.2.4 Discussion and evaluation</p> <p>7.3 Formulation of the linearized model</p> <p>7.3.1 Basic assumptions</p> <p>7.3.2 Basic equations</p> <p>7.3.3 The perturbation procedure</p> <p>7.3.4 Range of validity of the proposed model</p> <p>7.3.5 Special and limiting cases</p> <p>7.4 Solution</p> <p>7.4.1 Integration of the linearized Reynolds Equation</p> <p>7.4.2 Bearing dynamic characteristics</p> <p>7.5 Results and discussion</p> <p>7.5.1 General characteristics and Similitude</p> <p>7.5.2 The supply pressure response Kp</p> <p>7.5.3 Comparison with experiment</p> <p>7.6 Summary</p> <p>References</p> <p>8. Aerodynamic action: Self-acting bearing principles and configurations</p> <p>8.1 Introduction</p> <p>8.2 The aerodynamic action and the effect of compressibility</p> <p>8.3 Self-acting or EP Bearings?</p> <p>8.3.1 Energy
Summary: "Comprehensive treatise on gas bearing theory, design and application This book treats the fundamental aspects of gas bearings of different configurations (thrust, radial, circular, conical) and operating principles (externally pressurized, self-acting, hybrid, squeeze), guiding the reader throughout the design process from theoretical modelling, design parameters, numerical formulation, through experimental characterisation and practical design and fabrication. The book devotes a substantial part to the dynamic stability issues (pneumatic hammering, sub-synchronous whirling, active dynamic compensation and control), treating them comprehensively from theoretical and experimental points of view. Key features: Systematic and thorough treatment of the topic. Summarizes relevant previous knowledge with extensive references. Includes numerical modelling and solutions useful for practical application. Thorough treatment of the gas-film dynamics problem including active control. Discusses high-speed bearings and applications"-- Provided by publisher.
    average rating: 0.0 (0 votes)
No physical items for this record

Includes index.

"Comprehensive treatise on gas bearing theory, design and application This book treats the fundamental aspects of gas bearings of different configurations (thrust, radial, circular, conical) and operating principles (externally pressurized, self-acting, hybrid, squeeze), guiding the reader throughout the design process from theoretical modelling, design parameters, numerical formulation, through experimental characterisation and practical design and fabrication. The book devotes a substantial part to the dynamic stability issues (pneumatic hammering, sub-synchronous whirling, active dynamic compensation and control), treating them comprehensively from theoretical and experimental points of view. Key features: Systematic and thorough treatment of the topic. Summarizes relevant previous knowledge with extensive references. Includes numerical modelling and solutions useful for practical application. Thorough treatment of the gas-film dynamics problem including active control. Discusses high-speed bearings and applications"-- Provided by publisher.

Description based on print version record and CIP data provided by publisher; resource not viewed.

<P>List of contributors</p> <p>List of Tables</p> <p>List of Figures</p> <p>Preface</p> <p>Nomenclature</p> <p>1. Introduction</p> <p>1.1 Gas lubrication in perspective</p> <p>1.1.1 Short history</p> <p>1.2 Capabilities and limitations of gas lubrication</p> <p>1.3 When is the use of air bearings pertinent</p> <p>1.4 Situation of the present work</p> <p>1.5 Classification of air bearings for analysis purposes</p> <p>1.6 Structure of the book 1</p> <p>References</p> <p>2 .General Formulation and Modelling</p> <p>2.1 Introduction</p> <p>2.1.1 Qualitative description of the flow</p> <p>2.2 Basic equations of the flow</p> <p>2.2.1 Continuity equation</p> <p>2.2.2 Navier-Stokes momentum equation</p> <p>2.2.3 The (thermodynamic) Energy equation</p> <p>2.2.4 Equation of State</p> <p>2.2.5 Auxiliary conditions</p> <p>2.2.6 Comment on the solution of the flow problem</p> <p>2.3 Simplification of the flow equations</p> <p>2.3.1 Fluid properties and body forces</p> <p>2.3.2 Truncation of the flow equations</p> <p>2.3.3 Film flow (or channel flow)</p> <p>2.4 Formulation of bearing flow and pressure models</p> <p>2.4.1 The quasi-static flow model for axisymmetric EP bearing</p> <p>2.4.2 The Reynolds plus restrictor model</p> <p>2.5 The basic bearing characteristics</p> <p>2.5.1 The load carrying capacity</p> <p>2.5.2 The axial stiffness</p> <p>2.5.3 The feed mass flow rate</p> <p>2.5.4 The mass flow rate in the viscous region</p> <p>2.5.5 The tangential resistive, "friction" force</p> <p>2.6 Normalization and similitude</p> <p>2.6.1 The axisymmetric flow problem</p> <p>2.6.2 Geometry</p> <p>2.6.3 Dimensionless parameters and similitude</p> <p>2.6.4 The Reynolds equation</p> <p>2.6.5 The bearing characteristics</p> <p>2.6.6 Static similarity of two bearings</p> <p>2.7 Methods of solution</p> <p>2.7.1 Analytic methods</p> <p>2.7.2 Semi-analytic Methods</p> <p>2.7.3 Purely numerical methods</p> <p>2.8 Summary</p> <p>References</p> <p>3. Flow into the bearing gap</p> <p>3.1 Introduction</p> <p>3.2 Entrance to a parallel channel (gap) with stationary, parallel walls</p> <p>3.2.1 Analysis of flow development</p> <p>3.3 Results and discussion</p> <p>3.3.1 Limiting cases</p> <p>3.3.2 Method of solution</p> <p>3.3.3 Determination of the entrance length into a plane channel</p> <p>3.4 The case of radial flow of a polytropically compressible fluid between nominally parallel plates</p> <p>3.4.1 Conclusions on pressure-fed entrance</p> <p>3.5 Narrow channel entrance by shear-induced flow</p> <p>3.5.1 Stability of viscous laminar flow at the entrance</p> <p>3.5.2 Development of the flow upstream of a slider bearing</p> <p>3.5.3 Development of the flow downstream of the gap entrance</p> <p>3.5.4 Method of solution</p> <p>3.5.5 Conclusions regarding shear-induced entrance flow</p> <p>3.6 Summary</p> <p>References</p> <p>4. Reynolds Equation: Derivation, forms and interpretations</p> <p>4.1 Introduction</p> <p>4.2 The Reynolds equation</p> <p>4.3 The Reynolds Equation for various film/bearing arrangements and coordinate systems</p> <p>4.3.1 Cartesian coordinates (x; y)</p> <p>4.3.2 Plain polar coordinates (r; -)</p> <p>4.3.3 Cylinderical coordinates (z; -) with constant R</p> <p>4.3.4 Conical coordinates (r; -) (- = -- = constant)</p> <p>4.3.5 Spherical coordinates (-; -) (r = R = constant)</p> <p>4.4 Interpretation of the Reynolds Equation when both surfaces are moving and not flat</p> <p>4.4.1 Stationary inclined upper surface, sliding lower member</p> <p>4.4.2 Pure surface motion</p> <p>4.4.3 Inclined moving upper surface with features</p> <p>4.4.4 Moving periodic feature on one or both surfaces</p> <p>4.5 Neglected flow effects</p> <p>4.6 Wall smoothness effects</p> <p>4.6.1 Effect of surface roughness</p> <p>4.7 Slip at the walls</p> <p>4.8 Turbulence</p> <p>4.8.1 Formulation</p> <p>4.9 Approximate methods for incorporating the convective terms in integral flow formulations and the modified Reynolds Equation</p> <p>4.9.1 Introduction</p> <p>4.9.2 Analysis</p> <p>4.9.3 Limiting solution: the Reynolds equation</p> <p>4.9.4 Approximate solutions to steady channel entrance problems</p> <p>4.9.5 Approximation of convective terms by averaging: the modified Reynolds Equation</p> <p>4.9.6 Approximation of convective terms by averaging in turbulent flow</p> <p>4.9.7 summary</p> <p>4.10 Closure</p> <p>References</p> <p>5. Modelling of Radial Flow in Externally Pressurised Bearings</p> <p>5.1 Introduction</p> <p>5.2 Radial flow in the gap and its modelling</p> <p>5.3 Lumped parameter models</p> <p>5.3.1 The orifice/nozzle formula</p> <p>5.3.2 Vohr's correlation formula</p> <p>5.4 Short review of other methods</p> <p>5.4.1 Approximation of the inertia (or convective) terms</p> <p>5.4.2 The momentum integral method</p> <p>5.4.3 Series expansion</p> <p>5.4.4 Pure numerical solutions</p> <p>5.5 Application of the method of "separation of variables"</p> <p>5.5.1 Boundary conditions on I</p> <p>5.5.2 Flow from stagnation to gap entrance</p> <p>5.5.3 The density function in the gap</p> <p>5.5.4 Solution procedure</p> <p>5.6 Results and discussion</p> <p>5.6.1 Qualitative trends</p> <p>5.6.2 Comparison with experiments</p> <p>5.7 Other comparisons</p> <p>5.8 Formulation of a lumped-parameter inherent compensator model</p> <p>5.8.1 The entrance coefficient of discharge</p> <p>5.8.2 Calculation of Cd</p> <p>5.8.3 The normalized inlet flow rate</p> <p>5.8.4 Solution of the static axisymmetric bearing problem by the Reynolds/compensator model</p> <p>5.9 Summary</p> <p>References</p> <p>6. Basic Characteristics of Circular Centrally Fed Aerostatic Bearings</p> <p>6.1 Introduction</p> <p>6.2 Axial characteristics: Load, stiffness and flow</p> <p>6.2.1 Determination of the pressure distribution</p> <p>6.2.2 Typical results</p> <p>6.2.3 Characteristics with given supply pressure</p> <p>6.2.4 Conclusions on axial characteristics</p> <p>6.3 Tilt and misalignment characteristics (Al-Bender 1992; Al-Bender and</p> <p>Van Brussel 1992)</p> <p>6.3.1 Analysis</p> <p>6.3.2 Theoretical results</p> <p>6.3.3 Experimental investigation</p> <p>6.3.4 Results, comparison and discussion</p> <p>6.3.5 Conclusions on tilt</p> <p>6.4 The influence of relative sliding velocity on aerostatic bearing characteristics</p> <p>(Al-Bender 1992)</p> <p>6.4.1 Formulation of the problem</p> <p>6.4.2 Qualitative considerations of the influence of relative velocity</p> <p>6.4.3 Solution method</p> <p>6.4.4 Results and discussion</p> <p>6.4.5 Conclusions on relative sliding</p> <p>6.5 Summary</p> <p>References</p> <p>7. Dynamic Characteristics of Circular Centrally Fed Aerostatic Bearing Films, and the Problem of Pneumatic Stability</p> <p>7.1 Introduction</p> <p>7.1.1 Pneumatic instability</p> <p>7.1.2 Squeeze film</p> <p>7.1.3 Active compensation</p> <p>7.1.4 Objeetives and layout of this study</p> <p>7.2 Review of past treatments</p> <p>7.2.1 Models and theory</p> <p>7.2.2 System analysis tools and stability criteria</p> <p>7.2.3 Methods of stabilization</p> <p>7.2.4 Discussion and evaluation</p> <p>7.3 Formulation of the linearized model</p> <p>7.3.1 Basic assumptions</p> <p>7.3.2 Basic equations</p> <p>7.3.3 The perturbation procedure</p> <p>7.3.4 Range of validity of the proposed model</p> <p>7.3.5 Special and limiting cases</p> <p>7.4 Solution</p> <p>7.4.1 Integration of the linearized Reynolds Equation</p> <p>7.4.2 Bearing dynamic characteristics</p> <p>7.5 Results and discussion</p> <p>7.5.1 General characteristics and Similitude</p> <p>7.5.2 The supply pressure response Kp</p> <p>7.5.3 Comparison with experiment</p> <p>7.6 Summary</p> <p>References</p> <p>8. Aerodynamic action: Self-acting bearing principles and configurations</p> <p>8.1 Introduction</p> <p>8.2 The aerodynamic action and the effect of compressibility</p> <p>8.3 Self-acting or EP Bearings?</p> <p>8.3.1 Energy

Wiley Frontlist Obook All English 2021

There are no comments for this item.

Log in to your account to post a comment.