Bandwidth efficient coding / .John B. Anderson.
By: Anderson, John B [author.].
Contributor(s): IEEE Xplore (Online Service) [distributor.] | Wiley [publisher.].
Material type: BookSeries: IEEE series on mobile & digital communication: Publisher: Piscataway, New Jersey : IEEE Press, 2017Distributor: [Piscataqay, New Jersey] : IEEE Xplore, [2017]Description: 1 PDF (208 pages).Content type: text Media type: electronic Carrier type: online resourceISBN: 9781119345244.Subject(s): Coding theory | Wireless communication systems | Coding theory | Wireless communication systems | Acceleration | Antennas | Bandwidth | Channel coding | Complexity theory | Constellation diagram | Convolution | Convolutional codes | Databases | Eigenvalues and eigenfunctions | Encoding | Feature extraction | Fourier transforms | Frequency division multiplexing | Frequency modulation | Kernel | Modulation | Multiple signal classification | OFDM | Quadrature amplitude modulation | Receivers | Speech | Support vector machines | Time-frequency analysis | Training | White noiseGenre/Form: Electronic books.Additional physical formats: Print version:: No titleDDC classification: 003/.54 Online resources: Abstract with links to resource Also available in print.Includes bibliographical references and index.
-- Preface ix -- 1 Introduction 1 -- 1.1 Electrical Communication, 2 -- 1.2 Modulation, 4 -- 1.3 Time and Bandwidth, 9 -- 1.4 Coding Versus Modulation, 13 -- 1.5 A Tour of the Book, 14 -- 1.6 Conclusions, 15 -- 2 Communication Theory Foundation 17 -- 2.1 Signal Space, 18 -- 2.2 Optimal Detection, 24 -- 2.3 Pulse Aliasing, 35 -- 2.4 Signal Phases and Channel Models, 37 -- 2.5 Error Events, 43 -- 2.6 Conclusions, 50 -- 3 Gaussian Channel Capacity 58 -- 3.1 Classical Channel Capacity, 59 -- 3.2 Capacity for an Error Rate and Spectrum, 64 -- 3.3 Linear Modulation Capacity, 68 -- 3.4 Conclusions, 72 -- 4 Faster than Nyquist Signaling 79 -- 4.1 Classical FTN, 80 -- 4.2 Reduced ISI-BCJR Algorithms, 87 -- 4.3 Good Convolutional Codes, 101 -- 4.4 Iterative Decoding Results, 110 -- 4.5 Conclusions, 114 -- 5 Multicarrier FTN 127 -- 5.1 Classical Multicarrier FTN, 128 -- 5.2 Distances, 134 -- 5.3 Alternative Methods and Implementations, 138 -- 5.4 Conclusions, 143 -- 6 Coded Modulation Performance 145 -- 6.1 Set-Partition Coding, 146 -- 6.2 Continuous Phase Modulation, 153 -- 6.3 Conclusions for Coded Modulation; Highlights, 161 -- 7 Optimal Modulation Pulses 163 -- 7.1 Slepian's Problem, 164 -- 7.2 Said's Optimum Distance Pulses, 177 -- 7.3 Conclusions, 185 -- Index 190
Restricted to subscribers or individual electronic text purchasers.
This book addresses a new coding solution to the challenge of communicating more bits of information in the same radio spectrum Bandwidth Efficient Coding addresses the major challenge in communication engineering today: how to communicate more bits of information in the same radio spectrum. Energy and bandwidth are needed to transmit bits, and bandwidth affects capacity the most. Methods have been developed that are ten times as energy efficient at a given bandwidth consumption as simple methods. These employ signals with very complex patterns and are called "coding" solutions. The book begins with classical theory before introducing new techniques that combine older methods of error correction coding and radio transmission in order to create narrowband methods that are as efficient in both spectrum and energy as nature allows. Other topics covered include modulation techniques such as CPM, coded QAM and pulse design. In addition, this book: . Explores concepts and new transmission methods that have arisen in the last 15 years. Discusses the method of faster than Nyquist signaling. Provides self-education resources by including design parameters and short MATLAB routines Bandwidth Efficient Coding takes a fresh look at classical information theory and introduces a different point of view for research and development engineers and graduate students in communication engineering and wireless communication.
Also available in print.
Mode of access: World Wide Web
Online resource, title from PDF title page (EBSCO, viewed March 14, 2017).
There are no comments for this item.