Normal view MARC view ISBD view

Proper Generalized Decompositions [electronic resource] : An Introduction to Computer Implementation with Matlab / by Elías Cueto, David González, Icíar Alfaro.

By: Cueto, Elías [author.].
Contributor(s): González, David [author.] | Alfaro, Icíar [author.] | SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: SpringerBriefs in Applied Sciences and Technology: Publisher: Cham : Springer International Publishing : Imprint: Springer, 2016Edition: 1st ed. 2016.Description: XII, 96 p. 20 illus., 1 illus. in color. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783319299945.Subject(s): Mechanics, Applied | Solids | Mathematics—Data processing | Mathematical physics | Solid Mechanics | Computational Science and Engineering | Theoretical, Mathematical and Computational PhysicsAdditional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification: 620.105 Online resources: Click here to access online
Contents:
Introduction -- 2 To begin with: PGD for Poisson problems -- 2.1 Introduction -- 2.2 The Poisson problem -- 2.3 Matrix structure of the problem -- 2.4 Matlab code for the Poisson problem -- 3 Parametric problems -- 3.1 A particularly challenging problem: a moving load as a parameter -- 3.2 The problem under the PGD formalism -- 3.2.1 Computation of S(s) assuming R(x) is known -- 3.2.2 Computation of R(x) assuming S(s) is known -- 3.3 Matrix structure of the problem -- 3.4 Matlab code for the influence line problem -- 4 PGD for non-linear problems -- 4.1 Hyperelasticity -- 4.2 Matrix structure of the problem -- 4.2.1 Matrix form of the term T2 -- 4.2.2 Matrix form of the term T4 -- 4.2.3 Matrix form of the term T6 -- 4.2.4 Matrix form for the term T8 -- 4.2.5 Matrix form of the term T9 -- 4.2.6 Matrix form of the term T10 -- 4.2.7 Final comments -- 4.3 Matlab code -- 5 PGD for dynamical problems -- 5.1 Taking initial conditions as parameters -- 5.2 Developing the weak form of the problem -- 5.3 Matrix form of the problem -- 5.3.1 Time integration of the equations of motion -- 5.3.2 Computing a reduced-order basis for the field of initial conditions -- 5.3.3 Projection of the equations onto a reduced, parametric basis -- 5.4 Matlab code -- References -- Index. .
In: Springer Nature eBookSummary: This book is intended to help researchers overcome the entrance barrier to Proper Generalized Decomposition (PGD), by providing a valuable tool to begin the programming task. Detailed Matlab Codes are included for every chapter in the book, in which the theory previously described is translated into practice. Examples include parametric problems, non-linear model order reduction and real-time simulation, among others. Proper Generalized Decomposition (PGD) is a method for numerical simulation in many fields of applied science and engineering. As a generalization of Proper Orthogonal Decomposition or Principal Component Analysis to an arbitrary number of dimensions, PGD is able to provide the analyst with very accurate solutions for problems defined in high dimensional spaces, parametric problems and even real-time simulation. .
    average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- 2 To begin with: PGD for Poisson problems -- 2.1 Introduction -- 2.2 The Poisson problem -- 2.3 Matrix structure of the problem -- 2.4 Matlab code for the Poisson problem -- 3 Parametric problems -- 3.1 A particularly challenging problem: a moving load as a parameter -- 3.2 The problem under the PGD formalism -- 3.2.1 Computation of S(s) assuming R(x) is known -- 3.2.2 Computation of R(x) assuming S(s) is known -- 3.3 Matrix structure of the problem -- 3.4 Matlab code for the influence line problem -- 4 PGD for non-linear problems -- 4.1 Hyperelasticity -- 4.2 Matrix structure of the problem -- 4.2.1 Matrix form of the term T2 -- 4.2.2 Matrix form of the term T4 -- 4.2.3 Matrix form of the term T6 -- 4.2.4 Matrix form for the term T8 -- 4.2.5 Matrix form of the term T9 -- 4.2.6 Matrix form of the term T10 -- 4.2.7 Final comments -- 4.3 Matlab code -- 5 PGD for dynamical problems -- 5.1 Taking initial conditions as parameters -- 5.2 Developing the weak form of the problem -- 5.3 Matrix form of the problem -- 5.3.1 Time integration of the equations of motion -- 5.3.2 Computing a reduced-order basis for the field of initial conditions -- 5.3.3 Projection of the equations onto a reduced, parametric basis -- 5.4 Matlab code -- References -- Index. .

This book is intended to help researchers overcome the entrance barrier to Proper Generalized Decomposition (PGD), by providing a valuable tool to begin the programming task. Detailed Matlab Codes are included for every chapter in the book, in which the theory previously described is translated into practice. Examples include parametric problems, non-linear model order reduction and real-time simulation, among others. Proper Generalized Decomposition (PGD) is a method for numerical simulation in many fields of applied science and engineering. As a generalization of Proper Orthogonal Decomposition or Principal Component Analysis to an arbitrary number of dimensions, PGD is able to provide the analyst with very accurate solutions for problems defined in high dimensional spaces, parametric problems and even real-time simulation. .

There are no comments for this item.

Log in to your account to post a comment.