Normal view MARC view ISBD view

Nanostructured anodic metal oxides : synthesis and applications / edited by Grzegorz D. Sulka.

Contributor(s): Sulka, Grzegorz D.
Material type: materialTypeLabelBookSeries: Micro & nano technologies: Publisher: Amsterdam : Elsevier, 2020Description: 1 online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9780128168776; 0128168773.Subject(s): Metals -- Anodic oxidation | Nanostructured materials | Metallic oxides -- Industrial applications | Nanostructures | M�etaux -- Oxydation anodique | Nanomat�eriaux | Oxydes m�etalliques -- Applications industrielles | Metals -- Anodic oxidation | Nanostructured materialsAdditional physical formats: Ebook version :: No title; Print version:: Nanostructured anodic metal oxides.DDC classification: 620.1/15 Online resources: ScienceDirect
Contents:
Front Cover -- Nanostructured Anodic Metal Oxides: Synthesis and Applications -- Copyright Page -- Contents -- List of contributors -- Preface -- 1. Introduction to anodization of metals -- 1.1 Anodization of valve metals -- 1.2 Anodization as a simple electrolytic process -- 1.3 Ionic migration in anodic oxide films -- 1.4 Models of ionic conduction in the anodic oxide film -- 1.5 Types of anodic oxide films -- 1.6 Thermodynamics of oxide formation on metals -- 1.7 Kinetics of porous or tubular oxide growth -- 1.8 Mechanism of porous or tubular oxide growth
1.8.1 Field-assisted model of porous oxide formation -- 1.8.2 Plastic flow model of porous oxide formation -- 1.8.3 Oxygen bubble mold model of porous oxide formation -- 1.9 Factors influencing the morphology of anodic films -- 1.10 Summary -- References -- 2. Recent trends in synthesis of nanoporous anodic aluminum oxides -- 2.1 Introduction -- 2.2 Inorganic acids -- 2.2.1 Phosphonic acid (H3PO3) -- 2.2.2 Sulfamic acid (NH2SO3H) -- 2.2.3 Chromic acid (H2CrO4) -- 2.2.4 Selenic acid (H2SeO4) -- 2.2.5 Arsenic acid (H3AsO4) -- 2.2.6 Pyrophosphoric acid (H4P2O7) -- 2.3 Organic acids
2.3.1 Malonic acid -- 2.3.2 Tartaric acid -- 2.3.3 Citric acid -- 2.3.4 Etidronic acid -- 2.3.5 Glutaric acid and its derivatives -- 2.3.6 Malic acid -- 2.3.7 Other organic electrolytes -- 2.4 Alkaline and neutral solutions -- 2.5 Mixed electrolytes -- 2.5.1 Inorganic additives -- 2.5.1.1 Li ion incorporation -- 2.5.1.2 Cr ion incorporation -- 2.5.1.3 Fluoride-rich electrolytes -- 2.5.1.4 Cu2+ ions incorporation -- 2.5.2 Organic additives -- 2.5.2.1 Ethanol -- 2.5.2.2 Polyethylene glycol -- 2.5.2.3 Glycerin -- 2.5.2.4 Nonaqueous electrolytes -- 2.5.2.5 Ionic liquid addition
2.6 Other unusual conditions of anodization -- 2.6.1 Hybrid potential anodization -- 2.6.2 Laminated alumina layers-alternating current anodizing -- 2.6.3 Modified pulse anodization-ultrashort anodic alumina nanotubes -- 2.6.4 Synthesis of petal-like micropatterns and nanofibers -- 2.7 Summary -- Acknowledgment -- References -- 3. Anodizing of aluminum under the burning conditions -- 3.1 Introduction -- 3.2 General background -- 3.3 Toward burning process: hard anodizing -- 3.4 Burning anodizing -- 3.4.1 Onset of burning -- 3.4.2 Structural features of tartaric acid burned films
    average rating: 0.0 (0 votes)
No physical items for this record

Includes index.

Front Cover -- Nanostructured Anodic Metal Oxides: Synthesis and Applications -- Copyright Page -- Contents -- List of contributors -- Preface -- 1. Introduction to anodization of metals -- 1.1 Anodization of valve metals -- 1.2 Anodization as a simple electrolytic process -- 1.3 Ionic migration in anodic oxide films -- 1.4 Models of ionic conduction in the anodic oxide film -- 1.5 Types of anodic oxide films -- 1.6 Thermodynamics of oxide formation on metals -- 1.7 Kinetics of porous or tubular oxide growth -- 1.8 Mechanism of porous or tubular oxide growth

1.8.1 Field-assisted model of porous oxide formation -- 1.8.2 Plastic flow model of porous oxide formation -- 1.8.3 Oxygen bubble mold model of porous oxide formation -- 1.9 Factors influencing the morphology of anodic films -- 1.10 Summary -- References -- 2. Recent trends in synthesis of nanoporous anodic aluminum oxides -- 2.1 Introduction -- 2.2 Inorganic acids -- 2.2.1 Phosphonic acid (H3PO3) -- 2.2.2 Sulfamic acid (NH2SO3H) -- 2.2.3 Chromic acid (H2CrO4) -- 2.2.4 Selenic acid (H2SeO4) -- 2.2.5 Arsenic acid (H3AsO4) -- 2.2.6 Pyrophosphoric acid (H4P2O7) -- 2.3 Organic acids

2.3.1 Malonic acid -- 2.3.2 Tartaric acid -- 2.3.3 Citric acid -- 2.3.4 Etidronic acid -- 2.3.5 Glutaric acid and its derivatives -- 2.3.6 Malic acid -- 2.3.7 Other organic electrolytes -- 2.4 Alkaline and neutral solutions -- 2.5 Mixed electrolytes -- 2.5.1 Inorganic additives -- 2.5.1.1 Li ion incorporation -- 2.5.1.2 Cr ion incorporation -- 2.5.1.3 Fluoride-rich electrolytes -- 2.5.1.4 Cu2+ ions incorporation -- 2.5.2 Organic additives -- 2.5.2.1 Ethanol -- 2.5.2.2 Polyethylene glycol -- 2.5.2.3 Glycerin -- 2.5.2.4 Nonaqueous electrolytes -- 2.5.2.5 Ionic liquid addition

2.6 Other unusual conditions of anodization -- 2.6.1 Hybrid potential anodization -- 2.6.2 Laminated alumina layers-alternating current anodizing -- 2.6.3 Modified pulse anodization-ultrashort anodic alumina nanotubes -- 2.6.4 Synthesis of petal-like micropatterns and nanofibers -- 2.7 Summary -- Acknowledgment -- References -- 3. Anodizing of aluminum under the burning conditions -- 3.1 Introduction -- 3.2 General background -- 3.3 Toward burning process: hard anodizing -- 3.4 Burning anodizing -- 3.4.1 Onset of burning -- 3.4.2 Structural features of tartaric acid burned films

There are no comments for this item.

Log in to your account to post a comment.