Heterostructured photocatalysts for solar energy conversion / edited by Srabanti Ghosh.
Contributor(s): Ghosh, Srabanti.
Material type: BookSeries: Solar cell engineering: Publisher: Amsterdam : Elsevier, 2021Description: 1 online resource (386 pages).Content type: text Media type: computer Carrier type: online resourceISBN: 0128200731; 9780128200735.Subject(s): Solar energy | Energy conversion | Photocatalysis | Solar Energy | �Energie solaire | �Energie -- Conversion | Photocatalyse | solar power | Energy conversion | Photocatalysis | Solar energyAdditional physical formats: Print version:: Heterostructured Photocatalysts for Solar Energy Conversion.DDC classification: 621.47 Online resources: ScienceDirectPrint version record.
Front Cover -- Heterostructured Photocatalysts for Solar Energy Conversion -- Heterostructured Photocatalysts for Solar Energy Conversion -- Copyright -- Contents -- Contributors -- About editor -- Preface -- Acknowledgments -- 1 -- Heterogeneous photocatalysis: Z-scheme based heterostructures -- 1.1 Introduction -- 1.2 Types of heterostructures -- 1.3 Z-scheme heterostructures -- 1.3.1 Application of Z-scheme heterostructure in photocatalysts -- 1.3.1.1 Water splitting -- 1.3.1.2 Photocatalytic removal of pollutants -- 1.3.1.3 Photocatalytic CO2 reduction -- 1.4 Conclusion -- References
2 -- Atomic and electronic structure of direct Z-scheme photocatalyst: from fundamentals to applications -- 2.1 Introduction -- 2.2 What is direct Z-scheme photocatalyst? -- 2.3 Advantages -- 2.3.1 Spatial separation of reduction and oxidation site -- 2.3.2 Acceleration of charge carrier migration -- 2.3.3 Optimization of REDOX ability -- 2.3.4 Improvement in photostability -- 2.4 Applications -- 2.4.1 Photocatalytic hydrogen production -- 2.4.2 Photocatalytic CO2 reduction -- 2.4.3 Photocatalytic dinitrogen fixation -- 2.4.4 Photocatalytic bacteria disinfection
2.4.5 Photocatalytic dye degradation -- 2.5 Conclusion and future perspectives -- Acknowledgments -- References -- 3 -- Photocatalytic hydrogen generation using Z-scheme heterostructures through water reduction -- 3.1 Introduction -- 3.2 Fundamentals of photocatalytic water splitting -- 3.3 Natural Z-scheme photosynthesis -- 3.4 Artificial Z-scheme water splitting -- 3.4.1 Liquid phase Z-scheme water splitting -- 3.4.1.1 IO3-/I- Redox shuttle -- 3.4.1.2 Fe3+/Fe2+ redox shuttle -- 3.4.2 All-solid-state Z-scheme water splitting -- 3.4.2.1 Metals -- 3.4.2.2 Graphene oxide -- 3.4.2.3 Conductive carbon
3.4.3 Direct Z-scheme water splitting -- 3.5 Photocatalysts for half-reactions -- 3.5.1 Oxygen evolution -- 3.5.2 Hydrogen evolution -- 3.6 Conventional vs. Z-scheme water splitting in heterostructures -- 3.7 Conclusions -- References -- 4 -- Photocatalytic Z-scheme water splitting -- 4.1 Introduction -- 4.2 Z-scheme water splitting with redox mediators -- 4.2.1 Development of HEP in redox-mediator-based Z-scheme water splitting -- 4.2.1.1 Cation-doped oxide photocatalysts -- 4.2.1.2 (Oxy)nitride photocatalysts -- 4.2.1.3 (Oxy)sulfide photocatalysts -- 4.2.1.4 Dye-sensitized photocatalysts
4.2.2 Development of OEP in redox mediator-based Z-scheme water splitting -- 4.2.2.1 WO3 photocatalyst -- 4.2.2.2 BiVO4 photocatalyst -- 4.2.2.3 (Oxy)nitride photocatalysts -- 4.2.2.4 Oxyhalide photocatalysts -- 4.2.2.5 Photosystem II (PSII) enzyme photocatalysts -- 4.2.3 Development of redox mediator in Z-scheme water splitting -- 4.3 Z-scheme water splitting without redox mediators -- 4.3.1 Redox-mediator-free Z-scheme (direct Z-scheme) -- 4.3.2 Solid-state mediators -- 4.3.3 Particulate photocatalytic sheet -- 4.4 Conclusion -- References
5 -- Z-scheme-based heterostructure photocatalysts for organic pollutant degradation
Includes index.
There are no comments for this item.