Foamability of thermoplastic polymeric materials / Suprakas Sinha Ray and Ritima Banerjee.
By: Ray, Suprakas Sinha.
Contributor(s): Banerjee, Ritima.
Material type: BookPublisher: Amsterdam : Elsevier, 2021Description: 1 online resource (296 pages).Content type: text Media type: computer Carrier type: online resourceISBN: 9780323907682; 0323907687.Subject(s): Plastic foams | Thermoplastics | Mousses plastiques | Thermoplastiques | plastic foam | thermoplastic | Plastic foams | ThermoplasticsAdditional physical formats: Print version:: Foamability of Thermoplastic Polymeric Materials.DDC classification: 668.493 Online resources: ScienceDirectPrint version record.
Front Cover -- Foamability of Thermoplastic Polymeric Materials -- Copyright Page -- Dedication -- Contents -- About the authors -- Preface -- Acknowledgements -- 1 Introduction to polymer foams and foaming -- 1.1 Basics of polymer foams, foaming and foam properties -- 1.2 Effect of foam density and open-cell content on foam properties -- 1.3 Blowing agents -- 1.4 Foam manufacturing techniques -- 1.5 Dimensional stability and foam shrinkage -- 1.6 Crosslinked polyethylene foams -- 1.7 Thermoplastic polymeric materials used for foaming -- 1.8 Conclusion -- References
2 Foam manufacturing technologies -- 2.1 Batch foaming -- 2.2 Extrusion foaming -- 2.3 Foam injection moulding -- 2.3.1 Gas-assisted or gas injection moulding -- 2.4 Thermoset reactive foaming -- 2.5 Compression foam moulding -- 2.6 Rotational foam moulding -- 2.7 Bead foaming -- 2.7.1 Steam-chest moulding process -- 2.7.2 Postprocessing of the final part -- 2.7.3 Moulding of expanded polypropylene beads -- 2.8 Film foaming -- 2.9 Conclusion -- References -- 3 The science behind foaming -- 3.1 Gas dissolution -- 3.1.1 EOSs based on the lattice theory -- 3.1.2 Cubic equations of state
3.1.3 Off-lattice theory -- 3.1.4 Gas-polymer solubility studies using SL EOS -- 3.2 Diffusion in gas dissolution -- 3.3 Cell nucleation -- 3.3.1 Classical nucleation theory -- 3.3.1.1 Classical homogeneous nucleation -- 3.3.1.1.1 Rate of homogeneous nucleation -- 3.3.1.2 Classical heterogeneous nucleation -- 3.3.1.2.1 Rate of heterogeneous nucleation -- 3.3.1.3 Mixed mode nucleation -- 3.3.1.4 Limitations of the CNT -- 3.3.2 Pseudo-classical nucleation -- 3.3.3 Stress-induced nucleation -- 3.3.4 Cell density -- 3.4 Cell growth -- 3.4.1 Single bubble growth models -- 3.4.2 Cell models
3.4.2.1 Cell growth modelling -- 3.5 Cell stabilisation -- 3.6 Conclusion -- References -- 4 Foamability of thermoplastics -- 4.1 What is foamability? -- 4.2 Factors affecting foamability -- 4.2.1 Material characteristics -- 4.2.1.1 Rheological characteristics -- 4.2.1.1.1 Dynamic rheology -- 4.2.1.1.2 Extensional rheology -- 4.2.1.1.3 Shear rheology -- 4.2.1.2 Morphological characteristics -- 4.2.1.2.1 Crystallinity -- 4.2.1.2.2 Heterogeneous nucleating agents -- 4.2.1.3 Correlation of rheology and morphology in foamability -- 4.2.2 Processing conditions -- 4.2.3 Blowing agent -- 4.3 Conclusion
References-5 Foamability of multiphase polymeric materials-5.1 Foamability of polymer blends-5.2 Foamability of polymer composites and nanocomposites-5.3 Foamability of block copolymers-5.4 Conclusion-References-6 Foamability for special applications-6.1 Scaffolds-6.2 Acoustic applications-6.3 Packaging-6.4 Nanocellular materials for thermal superinsulation-6.5 Conclusion-References-7 Degradation studies of biodegradable foams-7.1 Degradation of foams of neat thermoplastic homopolymers-7.2 Degradation of foams of multiphase polymeric materials.
7.2.1 Degradation of foams of block copolymers.
There are no comments for this item.