Normal view MARC view ISBD view

Simulation of complex systems / Aykut Argun, Agnese Callegari and Giovanni Volpe.

By: Argun, Aykut [author.].
Contributor(s): Callegari, Agnese [author.] | Volpe, Giovanni (Physicist) [author.] | Institute of Physics (Great Britain) [publisher.].
Material type: materialTypeLabelBookSeries: IOP (Series)Release 21: ; IOP ebooks2021 collection: Publisher: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2021]Description: 1 online resource (various pagings) : illustrations (some color).Content type: text Media type: electronic Carrier type: online resourceISBN: 9780750338431; 9780750338424.Subject(s): Computer simulation | Computational complexity | Statistical physics | Mathematics and computationAdditional physical formats: Print version:: No titleDDC classification: 003.3 Online resources: Click here to access online Also available in print.
Contents:
1. Molecular dynamics -- 1.1. Single particle -- 1.2. Time reversibility -- 1.3. Multiple particles -- 1.4. Randomness -- 1.5. Further reading -- 1.6. Problems -- 1.7. Challenges
2. Ising model -- 2.1. Monte Carlo method -- 2.2. Ising model -- 2.3. Critical temperature -- 2.4. Critical mixtures -- 2.5. Further reading -- 2.6. Problems -- 2.7. Challenges
3. Forest fires -- 3.1. Forest growth and fire ignition -- 3.2. Power-law behavior -- 3.3. Further reading -- 3.4. Problems -- 3.5. Challenges
4. The game of life -- 4.1. One-dimensional cellular automata -- 4.2. Conway's game of life -- 4.3. Majority rule -- 4.4. Further reading -- 4.5. Problems -- 4.6. Challenges
5. Brownian dynamics -- 5.1. Random walks and universality -- 5.2. Discrete white noise -- 5.3. Brownian motion -- 5.4. Optical tweezers -- 5.5. Further reading -- 5.6. Problems -- 5.7. Challenges
6. Anomalous diffusion -- 6.1. Anomalous diffusion exponent -- 6.2. Regularization and normalization -- 6.3. Models of anomalous diffusion -- 6.4. Anomalous diffusion in a non-homogeneous force field -- 6.5. Further reading -- 6.6. Problems -- 6.7. Challenges
7. Multiplicative noise -- 7.1. A minimal discrete-time model -- 7.2. Position-dependent noise -- 7.3. Stochastic integrals -- 7.4. The spurious drift -- 7.5. Drift and diffusion measurement -- 7.6. Particles close to an interface -- 7.7. Further reading -- 7.8. Problems -- 7.9. Challenges
8. The Vicsek model -- 8.1. The standard Vicsek model -- 8.2. The effect of delay -- 8.3. Non-metric and non-reciprocal interactions -- 8.4. Further reading -- 8.5. Problems -- 8.6. Challenges
9. Living crystals -- 9.1. Active Brownian motion -- 9.2. Mean square displacement -- 9.3. Living crystals -- 9.4. Aligning interactions -- 9.5. Further reading -- 9.6. Problems -- 9.7. Challenges
10. Sensory delay -- 10.1. A light-sensitive robot -- 10.2. Single robot with a sensory delay -- 10.3. Multiple robots with sensory delay -- 10.4. Further reading -- 10.5. Problems -- 10.6. Challenges
11. Disease spreading -- 11.1. The agent-based SIR model -- 11.2. Disease transmission as a function of the infection rate -- 11.3. Extended SIR models -- 11.4. Lockdown strategies -- 11.5. Further reading -- 11.6. Problems -- 11.7. Challenges
12. Network models -- 12.1. The adjacency matrix -- 12.2. Path length, diameter, and clustering coefficient -- 12.3. Erd�ios-R�enyi random graphs -- 12.4. Watts-Strogatz small-world graphs -- 12.5. Albert-Barab�asi preferential-growth graphs -- 12.6. Further reading -- 12.7. Problems -- 12.8. Challenges
13. Evolutionary games -- 13.1. The prisoner's dilemma -- 13.2. Evolutionary games on a lattice -- 13.3. Multiple strategies -- 13.4. Further readings -- 13.5. Problems -- 13.6. Challenges
14. Ecosystems -- 14.1. Lotka-Volterra model -- 14.2. The logistic growth model -- 14.3. Mutualism -- 14.4. Competition -- 14.5. Further reading -- 14.6. Problems -- 14.7. Challenges
15. Ant-colony optimization -- 15.1. The minimum path length problem -- 15.2. Ants at work -- 15.3. Interruptions, accidents, and randomness -- 15.4. Further reading -- 15.5. Problems -- 15.6. Challenges
16. The Sugarscape -- 16.1. Models of segregation -- 16.2. The Sugarscape -- 16.3. Further reading -- 16.4. Problems -- 16.5. Challenges.
Abstract: This book deals with the most fundamental and essential techniques to simulate complex systems, from the dynamics of molecules to the spreading of diseases, from optimization using ant colonies to the simulation of the Game of Life.
    average rating: 0.0 (0 votes)
No physical items for this record

"Version: 202112"--Title page verso.

Includes bibliographical references.

1. Molecular dynamics -- 1.1. Single particle -- 1.2. Time reversibility -- 1.3. Multiple particles -- 1.4. Randomness -- 1.5. Further reading -- 1.6. Problems -- 1.7. Challenges

2. Ising model -- 2.1. Monte Carlo method -- 2.2. Ising model -- 2.3. Critical temperature -- 2.4. Critical mixtures -- 2.5. Further reading -- 2.6. Problems -- 2.7. Challenges

3. Forest fires -- 3.1. Forest growth and fire ignition -- 3.2. Power-law behavior -- 3.3. Further reading -- 3.4. Problems -- 3.5. Challenges

4. The game of life -- 4.1. One-dimensional cellular automata -- 4.2. Conway's game of life -- 4.3. Majority rule -- 4.4. Further reading -- 4.5. Problems -- 4.6. Challenges

5. Brownian dynamics -- 5.1. Random walks and universality -- 5.2. Discrete white noise -- 5.3. Brownian motion -- 5.4. Optical tweezers -- 5.5. Further reading -- 5.6. Problems -- 5.7. Challenges

6. Anomalous diffusion -- 6.1. Anomalous diffusion exponent -- 6.2. Regularization and normalization -- 6.3. Models of anomalous diffusion -- 6.4. Anomalous diffusion in a non-homogeneous force field -- 6.5. Further reading -- 6.6. Problems -- 6.7. Challenges

7. Multiplicative noise -- 7.1. A minimal discrete-time model -- 7.2. Position-dependent noise -- 7.3. Stochastic integrals -- 7.4. The spurious drift -- 7.5. Drift and diffusion measurement -- 7.6. Particles close to an interface -- 7.7. Further reading -- 7.8. Problems -- 7.9. Challenges

8. The Vicsek model -- 8.1. The standard Vicsek model -- 8.2. The effect of delay -- 8.3. Non-metric and non-reciprocal interactions -- 8.4. Further reading -- 8.5. Problems -- 8.6. Challenges

9. Living crystals -- 9.1. Active Brownian motion -- 9.2. Mean square displacement -- 9.3. Living crystals -- 9.4. Aligning interactions -- 9.5. Further reading -- 9.6. Problems -- 9.7. Challenges

10. Sensory delay -- 10.1. A light-sensitive robot -- 10.2. Single robot with a sensory delay -- 10.3. Multiple robots with sensory delay -- 10.4. Further reading -- 10.5. Problems -- 10.6. Challenges

11. Disease spreading -- 11.1. The agent-based SIR model -- 11.2. Disease transmission as a function of the infection rate -- 11.3. Extended SIR models -- 11.4. Lockdown strategies -- 11.5. Further reading -- 11.6. Problems -- 11.7. Challenges

12. Network models -- 12.1. The adjacency matrix -- 12.2. Path length, diameter, and clustering coefficient -- 12.3. Erd�ios-R�enyi random graphs -- 12.4. Watts-Strogatz small-world graphs -- 12.5. Albert-Barab�asi preferential-growth graphs -- 12.6. Further reading -- 12.7. Problems -- 12.8. Challenges

13. Evolutionary games -- 13.1. The prisoner's dilemma -- 13.2. Evolutionary games on a lattice -- 13.3. Multiple strategies -- 13.4. Further readings -- 13.5. Problems -- 13.6. Challenges

14. Ecosystems -- 14.1. Lotka-Volterra model -- 14.2. The logistic growth model -- 14.3. Mutualism -- 14.4. Competition -- 14.5. Further reading -- 14.6. Problems -- 14.7. Challenges

15. Ant-colony optimization -- 15.1. The minimum path length problem -- 15.2. Ants at work -- 15.3. Interruptions, accidents, and randomness -- 15.4. Further reading -- 15.5. Problems -- 15.6. Challenges

16. The Sugarscape -- 16.1. Models of segregation -- 16.2. The Sugarscape -- 16.3. Further reading -- 16.4. Problems -- 16.5. Challenges.

This book deals with the most fundamental and essential techniques to simulate complex systems, from the dynamics of molecules to the spreading of diseases, from optimization using ant colonies to the simulation of the Game of Life.

Undergraduate and graduate students.

Also available in print.

Mode of access: World Wide Web.

System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.

Aykut Argun is a PhD student in Physics at Gothenburg University. His research interests are optical trapping and manipulation, statistical physics, soft matter, active matter, machine learning technique applied to experimental data Analysis. Agnese Callegari is a researcher at the Physics Department of Gothenburg University. Her research interests are optical trapping and manipulation, statistical physics, soft matter, active matter. Giovanni Volpe is a Professor at the Physics Department of the University of Gothenburg University, where he leads the Active Matter Group. His research interests include soft matter, optical trapping and manipulation, statistical mechanics, brain connectivity, and machine learning.

Title from PDF title page (viewed on January 18, 2022).

There are no comments for this item.

Log in to your account to post a comment.