Nonlinear distortion in wireless systems : modeling and simulation with MATLAB /
Khaled M. Gharaibeh.
- 1 PDF (392 pages).
- Wiley - IEEE .
- Wiley - IEEE .
Includes bibliographical references.
Preface xv -- List of Abbreviations xvii -- List of Figures xix -- List of Tables xxvii -- Acknowledgements xxix -- 1 Introduction 1 -- 1.1 Nonlinearity in Wireless Communication Systems 1 -- 1.1.1 Power Amplifiers 2 -- 1.1.2 Low-Noise Amplifiers (LNAs) 4 -- 1.1.3 Mixers 6 -- 1.2 Nonlinear Distortion in Wireless Systems 6 -- 1.2.1 Adjacent-Channel Interference 8 -- 1.2.2 Modulation Quality and Degradation of System Performance 9 -- 1.2.3 Receiver Desensitization and Cross-Modulation 11 -- 1.3 Modeling and Simulation of Nonlinear Systems 12 -- 1.3.1 Modeling and Simulation in Engineering 12 -- 1.3.2 Modeling and Simulation for Communication System Design 14 -- 1.3.3 Behavioral Modeling of Nonlinear Systems 15 -- 1.3.4 Simulation of Nonlinear Circuits 16 -- 1.4 Organization of the Book 19 -- 1.5 Summary 20 -- 2 Wireless Communication Systems, Standards and Signal Models 21 -- 2.1 Wireless System Architecture 21 -- 2.1.1 RF Transmitter Architectures 23 -- 2.1.2 Receiver Architecture 26 -- 2.2 Digital Signal Processing in Wireless Systems 30 -- 2.2.1 Digital Modulation 31 -- 2.2.2 Pulse Shaping 37 -- 2.2.3 Orthogonal Frequency Division Multiplexing (OFDM) 39 -- 2.2.4 Spread Spectrum Modulation 41 -- 2.3 Mobile System Standards 45 -- 2.3.1 Second-Generation Mobile Systems 46 -- 2.3.2 Third-Generation Mobile Systems 48 -- 2.3.3 Fourth-Generation Mobile Systems 51 -- 2.3.4 Summary 51 -- 2.4 Wireless Network Standards 52 -- 2.4.1 First-Generation Wireless LANs 52 -- 2.4.2 Second-Generation Wireless LANs 52 -- 2.4.3 Third-Generation Wireless Networks (WMANs) 53 -- 2.5 Nonlinear Distortion in Different Wireless Standards 55 -- 2.6 Summary 56 -- 3 Modeling of Nonlinear Systems 59 -- 3.1 Analytical Nonlinear Models 60 -- 3.1.1 General Volterra Series Model 60 -- 3.1.2 Wiener Model 62 -- 3.1.3 Single-Frequency Volterra Models 63 -- 3.1.4 The Parallel Cascade Model 65 -- 3.1.5 Wiener-Hammerstein Models 66 -- 3.1.6 Multi-Input Single-Output (MISO) Volterra Model 67 -- 3.1.7 The Polyspectral Model 67. 3.1.8 Generalized Power Series 68 -- 3.1.9 Memory Polynomials 69 -- 3.1.10 Memoryless Models 70 -- 3.1.11 Power-Series Model 70 -- 3.1.12 The Limiter Family of Models 72 -- 3.2 Empirical Nonlinear Models 74 -- 3.2.1 The Three-Box Model 74 -- 3.2.2 The Abuelma'ati Model 75 -- 3.2.3 Saleh Model 76 -- 3.2.4 Rapp Model 76 -- 3.3 Parameter Extraction of Nonlinear Models from Measured Data 76 -- 3.3.1 Polynomial Models 77 -- 3.3.2 Three-Box Model 79 -- 3.3.3 Volterra Series 80 -- 3.4 Summary 80 -- 4 Nonlinear Transformation of Deterministic Signals 83 -- 4.1 Complex Baseband Analysis and Simulations 84 -- 4.1.1 Complex Envelope of Modulated Signals 85 -- 4.1.2 Baseband Equivalent of Linear System Impulse Response 89 -- 4.2 Complex Baseband Analysis of Memoryless Nonlinear Systems 90 -- 4.2.1 Power-Series Model 92 -- 4.2.2 Limiter Model 92 -- 4.3 Complex Baseband Analysis of Nonlinear Systems with Memory 94 -- 4.3.1 Volterra Series 94 -- 4.3.2 Single-Frequency Volterra Models 95 -- 4.3.3 Wiener-Hammerstein Model 96 -- 4.4 Complex Envelope Analysis with Multiple Bandpass Signals 97 -- 4.4.1 Volterra Series 97 -- 4.4.2 Single-Frequency Volterra Models 99 -- 4.4.3 Wiener-Hammerstein Model 100 -- 4.4.4 Multi-Input Single-Output Nonlinear Model 103 -- 4.4.5 Memoryless Nonlinearity-Power-Series Model 104 -- 4.5 Examples-Response of Power-Series Model to Multiple Signals 106 -- 4.5.1 Single Tone 107 -- 4.5.2 Two-Tone Signal 107 -- 4.5.3 Single-Bandpass Signal 108 -- 4.5.4 Two-Bandpass Signals 108 -- 4.5.5 Single Tone and a Bandpass Signal 109 -- 4.5.6 Multisines 110 -- 4.5.7 Multisine Analysis Using the Generalized Power-Series Model 111 -- 4.6 Summary 111 -- 5 Nonlinear Transformation of Random Signals 113 -- 5.1 Preliminaries 114 -- 5.2 Linear Systems with Stochastic Inputs 114 -- 5.2.1 White Noise 115 -- 5.2.2 Gaussian Processes 116 -- 5.3 Response of a Nonlinear System to a Random Input Signal 116 -- 5.3.1 Power-Series Model 116 -- 5.3.2 Wiener-Hammerstein Models 118 -- 5.4 Response of Nonlinear Systems to Gaussian Inputs 119. 5.4.1 Limiter Model 120 -- 5.4.2 Memoryless Power-Series Model 123 -- 5.5 Response of Nonlinear Systems to Multiple Random Signals 123 -- 5.5.1 Power-Series Model 124 -- 5.5.2 Wiener-Hammerstein Model 126 -- 5.6 Response of Nonlinear Systems to a Random Signal and a Sinusoid 128 -- 5.7 Summary 129 -- 6 Nonlinear Distortion 131 -- 6.1 Identification of Nonlinear Distortion in Digital Wireless Systems 132 -- 6.2 Orthogonalization of the Behavioral Model 134 -- 6.2.1 Orthogonalization of the Volterra Series Model 136 -- 6.2.2 Orthogonalization of Wiener Model 137 -- 6.2.3 Orthogonalization of the Power-Series Model 139 -- 6.3 Autocorrelation Function and Spectral Analysis of the Orthogonalized Model 140 -- 6.3.1 Output Autocorrelation Function 142 -- 6.3.2 Power Spectral Density 142 -- 6.4 Relationship Between System Performance and Uncorrelated Distortion 144 -- 6.5 Examples 146 -- 6.5.1 Narrowband Gaussian Noise 146 -- 6.5.2 Multisines with Deterministic Phases 148 -- 6.5.3 Multisines with Random Phases 152 -- 6.6 Measurement of Uncorrelated Distortion 154 -- 6.7 Summary 155 -- 7 Nonlinear System Figures of Merit 157 -- 7.1 Analogue System Nonlinear Figures of Merit 158 -- 7.1.1 Intermodulation Ratio 158 -- 7.1.2 Intercept Points 159 -- 7.1.3 1-dB Compression Point 160 -- 7.2 Adjacent-Channel Power Ratio (ACPR) 161 -- 7.3 Signal-to-Noise Ratio (SNR) 161 -- 7.4 CDMA Waveform Quality Factor ((Su(B) 163 -- 7.5 Error Vector Magnitude (EVM) 163 -- 7.6 Co-Channel Power Ratio (CCPR) 164 -- 7.7 Noise-to-Power Ratio (NPR) 164 -- 7.7.1 NPR of Communication Signals 165 -- 7.7.2 NBGN Model for Input Signal 166 -- 7.8 Noise Figure in Nonlinear Systems 167 -- 7.8.1 Nonlinear Noise Figure 169 -- 7.8.2 NBGN Model for Input Signal and Noise 171 -- 7.9 Summary 173 -- 8 Communication System Models and Simulation in MATLABª 175 -- 8.1 Simulation of Communication Systems 176 -- 8.1.1 Random Signal Generation 176 -- 8.1.2 System Models 176 -- 8.1.3 Baseband versus Passband Simulations 177 -- 8.2 Choosing the Sampling Rate in MATLABª Simulations 178. 8.3 Random Signal Generation in MATLABª 178 -- 8.3.1 White Gaussian Noise Generator 178 -- 8.3.2 Random Matrices 179 -- 8.3.3 Random Integer Matrices 179 -- 8.4 Pulse-Shaping Filters 180 -- 8.4.1 Raised Cosine Filters 180 -- 8.4.2 Gaussian Filters 182 -- 8.5 Error Detection and Correction 183 -- 8.6 Digital Modulation in MATLABª 184 -- 8.6.1 Linear Modulation 184 -- 8.6.2 Nonlinear Modulation 186 -- 8.7 Channel Models in MATLABª 188 -- 8.8 Simulation of System Performance in MATLABª 188 -- 8.8.1 BER 190 -- 8.8.2 Scatter Plots 195 -- 8.8.3 Eye Diagrams 196 -- 8.9 Generation of Communications Signals in MATLABª 198 -- 8.9.1 Narrowband Gaussian Noise 198 -- 8.9.2 OFDM Signals 199 -- 8.9.3 DS-SS Signals 203 -- 8.9.4 Multisine Signals 206 -- 8.10 Example 210 -- 8.11 Random Signal Generation in Simulinkª 211 -- 8.11.1 Random Data Sources 211 -- 8.11.2 Random Noise Generators 212 -- 8.11.3 Sequence Generators 213 -- 8.12 Digital Modulation in Simulinkª 214 -- 8.13 Simulation of System Performance in Simulinkª 214 -- 8.13.1 Example 1: Random Sources and Modulation 216 -- 8.13.2 Example 2: CDMA Transmitter 217 -- 8.13.3 Simulation of Wireless Standards in Simulinkª 220 -- 8.14 Summary 220 -- 9 Simulation of Nonlinear Systems in MATLABª 221 -- 9.1 Generation of Nonlinearity in MATLABª 221 -- 9.1.1 Memoryless Nonlinearity 221 -- 9.1.2 Nonlinearity with Memory 222 -- 9.2 Fitting a Nonlinear Model to Measured Data 224 -- 9.2.1 Fitting a Memoryless Polynomial Model to Measured Data 224 -- 9.2.2 Fitting a Three-Box Model to Measured Data 228 -- 9.2.3 Fitting a Memory Polynomial Model to a Simulated Nonlinearity 234 -- 9.3 Autocorrelation and Spectrum Estimation 235 -- 9.3.1 Estimation of the Autocorrelation Function 235 -- 9.3.2 Plotting the Signal Spectrum 237 -- 9.3.3 Power Measurements from a PSD 239 -- 9.4 Spectrum of the Output of a Memoryless Nonlinearity 240 -- 9.4.1 Single Channel 240 -- 9.4.2 Two Channels 243 -- 9.5 Spectrum of the Output of a Nonlinearity with Memory 246. 9.5.1 Three-Box Model 246 -- 9.5.2 Memory Polynomial Model 249 -- 9.6 Spectrum of Orthogonalized Nonlinear Model 251 -- 9.7 Estimation of System Metrics from Simulated Spectra 256 -- 9.7.1 Signal-to-Noise and Distortion Ratio (SNDR) 257 -- 9.7.2 EVM 260 -- 9.7.3 ACPR 262 -- 9.8 Simulation of Probability of Error 263 -- 9.9 Simulation of Noise-to-Power Ratio 268 -- 9.10 Simulation of Nonlinear Noise Figure 271 -- 9.11 Summary 278 -- 10 Simulation of Nonlinear Systems in Simulinkª 279 -- 10.1 RF Impairments in Simulinkª 280 -- 10.1.1 Communications Blockset 280 -- 10.1.2 The RF Blockset 280 -- 10.2 Nonlinear Amplifier Mathematical Models in Simulinkª 283 -- 10.2.1 The (3z(BMemoryless Nonlinearity(3y(B Block-Communications Blockset 283 -- 10.2.2 Cubic Polynomial Model 284 -- 10.2.3 Hyperbolic Tangent Model 284 -- 10.2.4 Saleh Model 285 -- 10.2.5 Ghorbani Model 285 -- 10.2.6 Rapp Model 285 -- 10.2.7 Example 286 -- 10.2.8 The (3z(BAmplifier(3y(B Block-The RF Blockset 286 -- 10.3 Nonlinear Amplifier Physical Models in Simulinkª 289 -- 10.3.1 (3z(BGeneral Amplifier(3y(B Block 290 -- 10.3.2 (3z(BS-Parameter Amplifier(3y(B Block 296 -- 10.4 Measurements of Distortion and System Metrics 297 -- 10.4.1 Adjacent-Channel Distortion 297 -- 10.4.2 In-Band Distortion 297 -- 10.4.3 Signal-to-Noise and Distortion Ratio 300 -- 10.4.4 Error Vector Magnitude 300 -- 10.5 Example: Performance of Digital Modulation with Nonlinearity 301 -- 10.6 Simulation of Noise-to-Power Ratio 302 -- 10.7 Simulation of Noise Figure in Nonlinear Systems 304 -- 10.8 Summary 306 -- Appendix A Basics of Signal and System Analysis 307 -- A.1 Signals 308 -- A.2 Systems 308 -- Appendix B Random Signal Analysis 311 -- B.1 Random Variables 312 -- B.1.1 Examples of Random Variables 312 -- B.1.2 Functions of Random Variables 312 -- B.1.3 Expectation 313 -- B.1.4 Moments 314 -- B.2 Two Random Variables 314 -- B.2.1 Independence 315 -- B.2.2 Joint Statistics 315 -- B.3 Multiple Random Variables 316 -- B.4 Complex Random Variables 317 -- B.5 Gaussian Random Variables 318. B.5.1 Single Gaussian Random Variable 318 -- B.5.2 Moments of Single Gaussian Random Variable 319 -- B.5.3 Jointly Gaussian Random Variables 319 -- B.5.4 Price's Theorem 320 -- B.5.5 Multiple Gaussian Random Variable 320 -- B.5.6 Central Limit Theorem 321 -- B.6 Random Processes 321 -- B.6.1 Stationarity 322 -- B.6.2 Ergodicity 323 -- B.6.3 White Processes 323 -- B.6.4 Gaussian Processes 324 -- B.7 The Power Spectrum 324 -- B.7.1 White Noise Processes 325 -- B.7.2 Narrowband Processes 326 -- Appendix C Introduction to MATLABª 329 -- C.1 MATLABª Scripts 329 -- C.2 MATLABª Structures 330 -- C.3 MATLABª Graphics 330 -- C.4 Random Number Generators 330 -- C.5 Moments and Correlation Functions of Random Sequences 332 -- C.6 Fourier Transformation 332 -- C.7 MATLABª Toolboxes 333 -- C.7.1 The Communication Toolbox 334 -- C.7.2 The RF Toolbox 334 -- C.8 Simulinkª 335 -- C.8.1 The Communication Blockset 339 -- C.8.2 The RF Blockset 339 -- References 341 -- Index 347.
Restricted to subscribers or individual electronic text purchasers.