Space electronic reconnaissance : localization therories and methods /
Fucheng Guo, Yun Fan, Yiyu Zhou, Caigen Zhou, Qiang Li.
- 1 PDF (xix, 357 pages) : illustrations.
Includes bibliographical references and index.
Preface xiii -- Acknowledgments xv -- Acronyms xvii -- 1 Introduction to Space Electronic Reconnaissance Geolocation 1 -- 1.1 Introduction 1 -- 1.2 An Overview of Space Electronic Reconnaissance Geolocation Technology 3 -- 1.2.1 Geolocation of an Emitter on the Earth 3 -- 1.2.2 Tracking of an Emitter on a Satellite 8 -- 1.2.3 Geolocation by Near-Space Platforms 9 -- 1.3 Structure of a Typical SER System 9 -- References 11 -- 2 Fundamentals of Satellite Orbit and Geolocation 13 -- 2.1 An Introduction to the Satellite and Its Orbit 13 -- 2.1.1 Kepler's Three Laws 13 -- 2.1.2 Classification of Satellite Orbits 15 -- 2.2 Orbit Parameters and State of Satellite 18 -- 2.2.1 Orbit Elements of a Satellite 18 -- 2.2.2 Definition of Several Arguments of Perigee and Their Correlations 20 -- 2.3 Definition of Coordinate Systems and Their Transformations 21 -- 2.3.1 Definition of Coordinate Systems 21 -- 2.3.2 Transformation between Coordinate Systems 25 -- 2.4 Spherical Model of the Earth for Geolocation 27 -- 2.4.1 Regular Spherical Model for Geolocation 27 -- 2.4.2 Ellipsoid Model of the Earth 27 -- 2.5 Coverage Area of a Satellite 30 -- 2.5.1 Approximate Calculation Method for the Coverage Area 30 -- 2.5.2 Examples of Calculation of the Coverage Area 31 -- 2.5.3 Side Reconnaissance Coverage Area 33 -- 2.6 Fundamentals of Geolocation 33 -- 2.6.1 Spatial Geolocation Plane 34 -- 2.6.2 Spatial Line of Position (LOP) 34 -- 2.7 Measurement Index of Geolocation Errors 38 -- 2.7.1 General Definition of Error 38 -- 2.7.2 Geometrical Dilution of Precision (GDOP) 40 -- 2.7.3 Graphical Representation of the Geolocation Error 40 -- 2.7.4 Spherical Error Probability (SEP) and Circular Error Probability (CEP) 41 -- 2.8 Observability Analysis of Geolocation 44 -- References 45 -- 3 Single-Satellite Geolocation System Based on Direction Finding 47 -- 3.1 Direction Finding Techniques 47 -- 3.1.1 Amplitude Comparison DF Technique 48 -- 3.1.2 Interferometer DF Technique 49 -- 3.1.3 Array-Based DF Technique 55. 3.1.4 Other DF Techniques 57 -- 3.2 Single-Satellite LOS Geolocation Method and Analysis 57 -- 3.2.1 Model of LOS Geolocation 57 -- 3.2.2 Solution of LOS Geolocation 59 -- 3.2.3 CRLB of the LOS Geolocation Error 60 -- 3.2.4 Simulation and Analysis of the LOS Geolocation Error 62 -- 3.2.5 Geometric Distribution of the LOS Geolocation Error 63 -- 3.3 Multitimes Statistic LOS Geolocation 64 -- 3.3.1 Single-Satellite Multitimes Triangulation 65 -- 3.3.2 Average for Single-Satellite Multitimes Geolocation 66 -- 3.3.3 Weighted Average for Single-Satellite Multitimes Geolocation 67 -- 3.3.4 Simulation of Single-Satellite LOS Geolocation 67 -- 3.4 Single HEO Satellite LOS Geolocation 73 -- 3.4.1 Analysis of Single GEO Satellite LOS Geolocation 73 -- 3.4.2 Geosynchronous Satellite Multitimes LOS Geolocation 74 -- References 77 -- 4 Multiple Satellites Geolocation Based on TDOA Measurement 79 -- 4.1 Three-Satellite Geolocation Based on a Regular Sphere 80 -- 4.1.1 Three-Satellite Geolocation Solution Method 80 -- 4.1.2 Multisatellite TDOA Geolocation Method 82 -- 4.1.3 CRLB of a Multisatellite TDOA Geolocation Error 85 -- 4.1.4 Osculation Error of the Spherical Earth Model 86 -- 4.2 Three-Satellite Geolocation Based on the WGS-84 Earth Surface Model 88 -- 4.2.1 Analytical Method 89 -- 4.2.2 Spherical Iteration Method 92 -- 4.2.3 Newton Iteration Method 94 -- 4.2.4 Performance Comparison among the Three Solution Methods 96 -- 4.2.5 Altitude Input Location Algorithm 100 -- 4.3 Ambiguity and No-Solution Problems of Geolocation 102 -- 4.3.1 Ambiguity Problem of Geolocation 102 -- 4.3.2 No-Solution Problem of Geolocation 106 -- 4.4 Error Analysis of Three-Satellite Geolocation 109 -- 4.4.1 Analysis of the Random Geolocation Error 109 -- 4.4.2 Analysis of Bias Caused by Altitude Assumption 112 -- 4.4.3 Influence of Change of the Constellation Geometric Configuration on GDOP 114 -- 4.5 Calibration Method of the Three-Satellite TDOA Geolocation System 117 -- 4.5.1 Four-Station Calibration Method and Analysis 117. 4.5.2 Three-Station Calibration Method 125 -- References 130 -- 5 Dual-Satellite Geolocation Based on TDOA and FDOA 133 -- 5.1 Introduction of TDOA / FDOA Geolocation by a Dual-Satellite 133 -- 5.1.1 Explanation of Dual-Satellite Geolocation Theory 133 -- 5.1.2 Structure of Dual-Satellite TDOA / FDOA Geolocation System 134 -- 5.2 Dual LEO Satellite TDOA / FDOA Geolocation Method 136 -- 5.2.1 Geolocation Model 136 -- 5.2.2 Solution Method of Algebraic Analysis 138 -- 5.2.3 Approximate Analytical Method for Same-Orbit Satellites 141 -- 5.2.4 Method for Eliminating an Ambiguous Geolocation Point 143 -- 5.3 Error Analysis for TDOA / FDOA Geolocation 144 -- 5.3.1 Analytic Method for the Geolocation Error 144 -- 5.3.2 GDOP of the Dual LEO Satellite Geolocation Error 146 -- 5.3.3 Analysis of Various Factors Influencing GDOP 151 -- 5.4 Dual HEO Satellite TDOA / FDOA Geolocation 152 -- 5.4.1 Dual Geosynchronous Orbit Satellites TDOA / FDOA Geolocation 152 -- 5.4.2 Calibration Method Based on Reference Sources 155 -- 5.4.3 Calibration Method Using Multiple Reference Sources 159 -- 5.4.4 Flow of Calibration and Geolocation 164 -- 5.5 Method of Measuring TDOA and FDOA 165 -- 5.5.1 The Cross-Ambiguity Function 165 -- 5.5.2 Theoretical Analysis on the TDOA / FDOA Measurement Performance 166 -- 5.5.3 Segment Correlation Accumulation Method for CAF Computation 168 -- 5.5.4 Resolution of Multiple Signals of the Same Time and Same Frequency 172 -- References 174 -- 6 Single-Satellite Geolocation System Based on the Kinematic Principle 177 -- 6.1 Single-Satellite Geolocation Model 177 -- 6.2 Single-Satellite Single-Antenna Frequency-Only Based Geolocation 179 -- 6.2.1 Frequency-Only Based Geolocation Method 179 -- 6.2.2 Analysis of the Geolocation Error 180 -- 6.2.3 Analysis of the Frequency-Only Based Geolocation Error 181 -- 6.3 Single-Satellite Geolocation by the Frequency Changing Rate Only 183 -- 6.3.1 Model of Geolocation by the Frequency Changing Rate Only 183 -- 6.3.2 CRLB of the Geolocation Error 185. 6.3.3 Geolocation Simulation 186 -- 6.4 Single-Satellite Single-Antenna TOA-Only Geolocation 186 -- 6.4.1 Model and Method of TOA-Only Geolocation 186 -- 6.4.2 Analysis of the Geolocation Error 189 -- 6.4.3 Geolocation Simulation 192 -- 6.5 Single-Satellite Interferometer Phase Rate of Changing-Only Geolocation 192 -- 6.5.1 Geolocation Model 192 -- 6.5.2 Geolocation Algorithm 195 -- 6.5.3 CRLB of the Geolocation Error 196 -- 6.5.4 Calculation Analysis of the Geolocation Error 197 -- References 201 -- 7 Geolocation by Near-Space Platforms 203 -- 7.1 An Overview of Geolocation by Near-Space Platforms 203 -- 7.1.1 Near-Space Platform Overview 203 -- 7.1.2 Geolocation by the Near-Space Platform 204 -- 7.2 Multiplatform Triangulation 204 -- 7.2.1 Theory of 2D Triangulation 204 -- 7.2.2 Error Analysis for Dual-Station Triangulation 205 -- 7.2.3 Optimal Geometric Configuration of Observers 207 -- 7.3 Multiplatform TDOA Geolocation 211 -- 7.3.1 Theory of Multiplatform TDOA Geolocation 211 -- 7.3.2 2D TDOA Geolocation Algorithm 212 -- 7.3.3 TDOA Geolocation Using the Altitude Assumption 215 -- 7.3.4 3D TDOA Geolocation Algorithm 215 -- 7.4 Localization Theory by a Single Platform 217 -- 7.4.1 Measurement Model of Localization 218 -- 7.4.2 A 2D Approximate Localization Method 219 -- 7.4.3 MGEKF (Modified Gain Extended Kalman Filter) Localization Method 221 -- 7.4.4 Simulation 223 -- References 225 -- 8 Satellite-to-Satellite Passive Orbit Determination by Bearings Only 227 -- 8.1 Introduction 227 -- 8.2 Model and Method of Bearings-Only Passive Tracking 227 -- 8.2.1 Mathematic Model in the Case of the Two-Body Problem 228 -- 8.2.2 Tracking Method in the Case of the Two-Body Model 229 -- 8.2.3 Mathematical Model Considering J2 Perturbation of Earth Oblateness 232 -- 8.2.4 Tracking Method Considering J2 Perturbation of Earth Oblateness 233 -- 8.3 System Observability Analysis 235 -- 8.3.1 Description Method for System Observability 235 -- 8.3.2 Influence of Factors on the State Equation 236. 8.3.3 Influence of Factors on the Measurement Equation 237 -- 8.4 Tracking Simulation and Analysis 239 -- 8.4.1 Simulation in the Case of the Two-Body Model 241 -- 8.4.2 Simulation Considering J2 Perturbation of Earth Oblateness 251 -- 8.5 Summary 258 -- References 259 -- 9 Satellite-to-Satellite Passive Tracking Based on Angle and Frequency Information 261 -- 9.1 Introduction of Passive Tracking 261 -- 9.2 Tracking Model and Method 262 -- 9.2.1 Mathematic Model in the Case of the Two-Body Model 262 -- 9.2.2 Tracking Method in the Case of the Two-Body Model 263 -- 9.2.3 Mathematical Models Considering J2 Perturbation of Earth Oblateness 266 -- 9.2.4 Tracking Method Considering J2 Perturbation of Earth Oblateness 267 -- 9.3 System Observability Analysis 268 -- 9.3.1 Influence of Factors of the State Equation 269 -- 9.3.2 Influence of Factors of the Measurement Equation 269 -- 9.4 Simulation and Its Analysis 277 -- 9.4.1 Simulation in the Case of the Two-Body Model 278 -- 9.4.2 Simulation Considering J2 Perturbation of Earth Oblateness 296 -- 9.5 Summary 308 -- References 309 -- 10 Satellite-to-Satellite Passive Orbit Determination Based on Frequency Only 311 -- 10.1 The Theory and Mathematical Model of Passive Orbit Determination Based on Frequency Only 313 -- 10.1.1 The Theory of Orbit Determination Based on Frequency Only 313 -- 10.1.2 The System Model in the Case of the Two-Body Model 313 -- 10.1.3 The System Model for J2 Perturbation of Earth Oblateness 315 -- 10.2 Satellite-to-Satellite Passive Orbit Determination Based on PSO and Frequency 317 -- 10.2.1 Introduction of Particle Swarm Optimization (PSO) 317 -- 10.2.2 Orbit Determination Method Based on the PSO Algorithm 319 -- 10.3 System Observability Analysis 320 -- 10.3.1 Simulation Scenario 1 322 -- 10.3.2 Simulation Scenario 2 323 -- 10.3.3 Simulation Scenario 3 325 -- 10.4 CRLB of the Orbit Parameter Estimation Error 329 -- 10.5 Orbit Determination and Tracking Simulation and Its Analysis 333 -- 10.5.1 Simulation in the Case of the Two-Body Model 334. 10.5.2 Simulation in the Case of Considering the Perturbation 347 -- References 348 -- 11 A Prospect of Space Electronic Reconnaissance Technology 349 -- Appendix Transformation of Orbit Elements, State and Coordinates of Satellites in Two-Body Motion 351 -- Index 355.
Restricted to subscribers or individual electronic text purchasers.
"Presents the theories and applications of determining the position of an object in space through the use of satellites"--
Mode of access: World Wide Web
9781118542200
10.1002/9781118542200 doi
Space surveillance. Electronic surveillance. Aerial reconnaissance.