Laser annealing processes in semiconductor technology : theory, modeling and applications in nanoelectronics /
edited by Fuccio Cristiano, Antonino La Magna.
- 1 online resource (1 volume) : illustrations (black and white, and colour).
- Woodhead Publishing series in electronic and optical materials .
- Woodhead Publishing series in electronic and optical materials. .
Intro -- Laser Annealing Processes in Semiconductor Technology: Theory, Modeling, and Applications in Nanoelectronics -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1: Historical evolution of pulsed laser annealing for semiconductor processing -- 1.1. Section 1: Introduction -- 1.2. Section 2: Excimer laser technology -- 1.2.1. Characteristics of the beam emitted by excimer lasers -- 1.2.2. Parameters that are relevant for the light-material interaction -- 1.2.3. Optics that can be used to shape the beam and prepare it for industrial applications -- 1.3. Section 3: Excimer laser annealing for low-temperature polycrystalline silicon technology -- 1.3.1. Excimer Laser process engineering -- 1.3.1.1. Trailing-/leading-edge scanning mode -- 1.3.1.2. Sequential lateral solidification -- 1.3.1.3. Two-pass excimer Laser process -- 1.3.1.4. Phase-modulated excimer laser annealing -- 1.3.1.5. Micro-Czochralski technique -- 1.3.2. Excimer laser-crystallized thin-film transistors -- 1.4. Section 4: Excimer laser annealing in MOS technology -- 1.4.1. Logic applications -- 1.4.2. Power MOS and RF/microwave applications -- 1.5. Conclusions -- References -- Chapter 2: Laser-matter interactions -- 2.1. Introduction -- 2.2. Absorption of electromagnetic radiation -- 2.3. Thermal effects of laser radiation -- 2.4. Differences across the electromagnetic spectrum -- 2.5. Diffusion model extension to millisecond regime -- 2.5.1. Thermal interaction -- 2.5.2. Diffusion simulation and activation kinetics -- 2.6. Concluding remarks -- References -- Chapter 3: Atomistic modeling of laser-related phenomena -- 3.1. Introduction -- 3.2. Atomistic simulation techniques -- 3.2.1. Ab initio -- 3.2.2. Tight binding -- 3.2.3. Classical molecular dynamics -- 3.2.4. Kinetic Monte Carlo -- 3.2.5. Multiscale modeling. 3.3. Laser annealing modeling from an atomistic perspective -- 3.3.1. Ab initio models -- 3.3.1.1. Finite temperature-density functional theory -- 3.3.1.2. Finite temperature-density functional perturbation theory -- 3.3.1.3. Time-dependent density functional theory -- 3.3.2. Tight binding models -- 3.3.2.1. Finite temperature tight binding simulations -- 3.3.2.2. Time-dependent tight binding simulations -- 3.3.3. Classical molecular dynamics models -- 3.3.3.1. Preassumed heating profiles -- 3.3.3.2. Two-temperature model molecular dynamics -- 3.3.3.3. Electronic-temperature-dependent interatomic potentials -- 3.4. Laser-related phenomena in semiconductors -- 3.4.1. Melting and regrowth -- 3.4.2. Dopant and defect kinetics -- 3.4.3. Dopant segregation -- 3.4.4. Anomalous generation of extended defects -- 3.5. Conclusions -- References -- Chapter 4: Laser annealing applications for semiconductor devices manufacturing -- 4.1. Introduction -- 4.2. Power devices -- 4.2.1. Si power devices -- 4.2.2. Wide bandgap material power devices -- 4.2.2.1. SiC annealing -- 4.2.2.2. GaN annealing -- 4.2.2.3. Ohmic contact formation -- 4.2.3. Conclusion -- 4.3. CMOS logic and 3D integration -- 4.3.1. Top-tier active area formation -- 4.3.2. Polygate formation -- 4.3.3. Dopant activation for extensions, S/D, and contact areas -- 4.3.3.1. Shallow junction formation key factors -- 4.3.3.2. Application to electrical device structures -- 4.3.4. Silicide formation -- 4.3.5. Front end and back end of line dielectrics -- 4.3.6. Back end of line copper interconnects -- 4.3.7. Conclusion -- 4.4. Memory -- 4.4.1. Vertical access devices -- 4.4.2. Vertical channel transistors -- 4.4.3. Conclusion -- 4.5. Conclusion -- References -- Chapter 5: Materials science issues related to the fabrication of highly doped junctions by laser annealing of Group IV s ... -- 5.1. Introduction. 5.2. Structural investigations -- 5.2.1. Melting and recrystallization kinetics -- 5.2.1.1. Melting temperature (amorphous vs crystal) -- 5.2.1.2. Melt front propagation, melt duration, and resolidification velocity -- 5.2.1.3. Dopant segregation -- 5.2.2. Laser-induced damage -- 5.2.2.1. Melt threshold: Localized surface melt -- 5.2.2.2. Partial- and full-melt regimes -- Extended defects in ion-implanted damaged layers -- Partial melt of amorphous layers: Explosive crystallization -- Strain relaxation in melted SiGe layers -- 5.3. Dopant redistribution and activation in Si -- 5.3.1. Laser annealing for impurity activation -- 5.3.1.1. Introduction -- 5.3.1.2. Metastable solubility -- 5.3.1.3. Thermal stability -- 5.3.2. Laser annealing of Group III impurities -- 5.3.2.1. Boron (B) -- 5.3.2.2. Aluminum (Al) -- 5.3.2.3. Gallium (Ga) -- 5.3.2.4. Indium (In) -- 5.3.3. Laser annealing of Group V impurities -- 5.3.3.1. Phosphorus (P) -- 5.3.3.2. Arsenic (As) -- 5.3.3.3. Antimony (Sb) -- 5.3.4. Laser annealing of Group VI impurities -- 5.4. Dopant redistribution and activation in Ge -- 5.4.1. Introduction -- 5.4.2. Laser annealing of Group III impurities in Ge -- 5.4.2.1. Boron (B) -- 5.4.2.2. Aluminum (Al) -- 5.4.2.3. Gallium (Ga) -- 5.4.3. Laser annealing of Group V impurities in Ge -- 5.4.3.1. Phosphorus (P) -- 5.4.3.2. Arsenic (As) -- 5.4.3.3. Antimony (Sb) -- 5.5. Conclusion -- References -- Chapter 6: Continuum modeling and TCAD simulations of laser-related phenomena in CMOS applications -- 6.1. Introduction: Complexity and multiple time and space scales in the simulation of irradiation processing -- 6.2. Computation of the energy transfer between laser and matter -- 6.2.1. Optical excitations and relaxation phenomena -- 6.2.2. Ultrashort laser pulse (ps timescale): Electrons and phonons kinetics. 6.2.3. Thermalization approximation and self-consistent electromagnetic calculations for the heat sources in laser annealing -- 6.2.4. Calibration issues -- 6.3. Laser annealing TCAD simulation: Nonmelting processes -- 6.3.1. Predictions of the heating process in electronic device structures -- 6.3.1.1. 1D simulation example -- 6.3.1.2. Patterning effects: FinFET arrays -- 6.3.2. Diffusion, reactions, and alloy mixing in the solid phase -- 6.3.3. Energy transport mediated by phonons in the nanoscale: Failure of Fourier law and corrections -- 6.4. Laser annealing TCAD simulation: Melting processes -- 6.4.1. Liquid-phase transition fundamentals: Free energy barrier, nucleation, and evolution -- 6.4.2. Phase-field and enthalpy formalisms: Limits and merits -- 6.4.3. Simulation examples of melting processes in 1D, 2D, and 3D systems -- 6.4.4. Impurity evolution in melting processes: Diffusion, segregation, and solute trapping -- 6.5. Complex phenomena and advanced simulations -- 6.5.1. Alloy problem in melting laser annealing simulations -- 6.5.2. Anomalous redistribution of impurities in melting LA processes -- 6.5.3. Defect evolution and dopant activation in partial melting processes -- 6.5.4. Explosive crystallization -- 6.6. Conclusion and future perspectives -- References -- Chapter 7: Laser engineering of carbon materials for optoelectronic applications -- 7.1. Optoelectronic and display devices: State of the art -- 7.1.1. Current technologies -- 7.1.2. Future challenges in optoelectronic technologies -- 7.2. Introduction to carbon in electronics -- 7.2.1. Graphene, graphene-like, and graphitic thin films -- 7.2.1.1. Properties of thin graphitic layers -- 7.2.1.2. Elaboration techniques -- 7.2.1.3. Integration of TGL in microelectronic devices -- 7.2.2. Diamond-like carbon thin films -- 7.2.2.1. Definition and properties of DLC. 7.2.2.2. Elaboration techniques -- 7.2.2.3. Integration of DLC in optoelectronic devices -- 7.3. Laser engineering of carbon materials -- 7.3.1. Pulsed laser deposition of carbon -- 7.3.1.1. Principle and experimental setup -- 7.3.1.2. DLC properties regarding laser parameters -- 7.3.2. Laser surface annealing of DLC thin films -- 7.3.2.1. Objectives of DLC surface annealing -- 7.3.2.2. Effects of laser characteristics on the TGL+DLC thin-film structure -- 7.3.2.3. Electrical and optical properties of annealed DLC -- 7.3.2.4. Performances ratings -- 7.4. Conclusion and perspectives -- References -- Chapter 8: Optical hyperdoping -- 8.1. Introduction -- 8.1.1. Si as an intermediate band semiconductor -- 8.1.2. Intermediate band semiconductor by hyperdoping -- 8.2. Historic overview -- 8.2.1. Defect-mediated all-Si NIR photodetectors -- 8.2.2. Chalcogen fs-hyperdoped Si -- 8.3. Implantation and pulsed laser melting of transition metals in Si -- 8.3.1. Titanium -- 8.3.2. Gold -- 8.3.3. Other transition metal species -- 8.4. Recent electrical and defect measurements -- 8.5. Ge and GeSn -- 8.5.1. Background -- 8.5.2. Ion beam synthesis of GeSn alloys -- 8.6. Conclusion -- References -- Chapter 9: Laser ultra-doped silicon: Superconductivity and applications -- 9.1. Introduction -- 9.2. Laser-doped superconducting silicon: Gas immersion laser doping -- 9.2.1. Laser-induced fusion -- 9.2.2. Surface homogeneity -- 9.2.3. Dopant incorporation -- 9.2.4. Dopant content and distribution -- 9.2.5. Dopant-induced strain -- 9.3. Silicon: A BCS superconductor tunable with doping -- 9.4. All-silicon superconducting devices -- 9.4.1. Superconducting quantum interference device (SQUID) -- 9.4.2. Proximity effect and all-silicon superconductor/normal metal Josephson junctions -- 9.4.3. Superconducting microwave resonators.
Laser Annealing Processes in Semiconductor Technology: Theory, Modeling and Applications in Nanoelectronics synthesizes the scientific and technological advances of laser annealing processes for current and emerging nanotechnologies. The book provides an overview of the laser-matter interactions of materials and recent advances in modeling of laser-related phenomena, with the bulk of the book focusing on current and emerging (beyond-CMOS) applications. Reviewed applications include laser annealing of CMOS, group IV semiconductors, superconducting materials, photonic materials, 2D materials. This comprehensive book is ideal for post-graduate students, new entrants, and experienced researchers in academia, research and development in materials science, physics and engineering.