Normal view MARC view ISBD view

Circuit simulation / Farid N. Najm.

By: Najm, Farid N [author.].
Contributor(s): John Wiley & Sons [publisher.] | IEEE Xplore (Online service) [distributor.].
Material type: materialTypeLabelBookPublisher: Hoboken, New Jersey : Wiley, c2010Distributor: [Piscataqay, New Jersey] : IEEE Xplore, [2010]Description: 1 PDF (xxiii, 318 pages) : illustrations.Content type: text Media type: electronic Carrier type: online resourceISBN: 9780470561218; 0470561211.Subject(s): Electronic circuits -- Computer simulation | Electronic circuits -- Mathematical models | Integrated circuits -- Computer simulation | Bibliographies | Capacitance | Capacitors | Circuit simulation | Eigenvalues and eigenfunctions | Equations | Indexes | Inductance | Inductors | Integrated circuit modeling | Jacobian matrices | Mathematical model | Nonlinear dynamical systems | Nonlinear equations | Nonlinear systems | Resistors | SPICE | Sparse matrices | Terminology | Vectors | Voltage controlGenre/Form: Electronic books.Additional physical formats: Print version:: No titleDDC classification: 621.381501/13 Online resources: Abstract with links to resource Also available in print.
Contents:
List of Figures. -- List of Tables. -- Preface. -- 1 Introduction. -- 1.1 Device Equations. -- 1.2 Equation Formulation. -- 1.3 Solution Techniques. -- 1.4 Circuit Simulation Flow. -- Notes. -- Problems. -- 2 Network Equations. -- 2.1 Elements and Networks. -- 2.2 Topological Constraints. -- 2.3 Cycle Space and Bond Space. -- 2.4 Formulation of Linear Algebraic Equations. -- 2.5 Formulation of Linear Dynamic Equations. -- Notes. -- Problems. -- 3 Solution of Linear Algebraic Circuit Equations. -- 3.1 Direct Methods. -- 3.2 Accuracy and Stability of GE. -- 3.3 Indirect/Iterative Methods. -- 3.4 Partitioning Techniques. -- 3.5 Sparse Matrix Techniques. -- Notes. -- Problems. -- 4 Solution of Nonlinear Algebraic Circuit Equations. -- 4.1 Nonlinear Network Equations. -- 4.2 Solution Techniques. -- 4.3 Application to Circuit Simulation. -- 4.4 Quasi-Newton Methods in Simulation. -- Notes. -- Problems. -- 5 Solution of Differential Circuit Equations. -- 5.1 Differential Network Equations. -- 5.2 ODE Solution Techniques. -- 5.3 Accuracy of LMS Methods. -- 5.4 Stability of LMS Methods. -- 5.5 Trapezoidal Ringing. -- 5.6 Variable Time-Step Methods. -- 5.7 Application to Circuit Simulation. -- Notes. -- Problems. -- Glossary. -- Bibliography. -- Index.
    average rating: 0.0 (0 votes)
No physical items for this record

Includes bibliographical references and index.

List of Figures. -- List of Tables. -- Preface. -- 1 Introduction. -- 1.1 Device Equations. -- 1.2 Equation Formulation. -- 1.3 Solution Techniques. -- 1.4 Circuit Simulation Flow. -- Notes. -- Problems. -- 2 Network Equations. -- 2.1 Elements and Networks. -- 2.2 Topological Constraints. -- 2.3 Cycle Space and Bond Space. -- 2.4 Formulation of Linear Algebraic Equations. -- 2.5 Formulation of Linear Dynamic Equations. -- Notes. -- Problems. -- 3 Solution of Linear Algebraic Circuit Equations. -- 3.1 Direct Methods. -- 3.2 Accuracy and Stability of GE. -- 3.3 Indirect/Iterative Methods. -- 3.4 Partitioning Techniques. -- 3.5 Sparse Matrix Techniques. -- Notes. -- Problems. -- 4 Solution of Nonlinear Algebraic Circuit Equations. -- 4.1 Nonlinear Network Equations. -- 4.2 Solution Techniques. -- 4.3 Application to Circuit Simulation. -- 4.4 Quasi-Newton Methods in Simulation. -- Notes. -- Problems. -- 5 Solution of Differential Circuit Equations. -- 5.1 Differential Network Equations. -- 5.2 ODE Solution Techniques. -- 5.3 Accuracy of LMS Methods. -- 5.4 Stability of LMS Methods. -- 5.5 Trapezoidal Ringing. -- 5.6 Variable Time-Step Methods. -- 5.7 Application to Circuit Simulation. -- Notes. -- Problems. -- Glossary. -- Bibliography. -- Index.

Restricted to subscribers or individual electronic text purchasers.

Also available in print.

Mode of access: World Wide Web

Description based on PDF viewed 12/21/2015.

There are no comments for this item.

Log in to your account to post a comment.