Normal view MARC view ISBD view

Optical path theory : fundamentals to freeform adaptive optics / Rafael G. Gonz�alez-Acu�ana, H�ector A. Chaparro-Romo.

By: Gonz�alez-Acu�ana, Rafael G [author.].
Contributor(s): Chaparro-Romo, H�ector A [author.] | Institute of Physics (Great Britain) [publisher.].
Material type: materialTypeLabelBookSeries: IOP (Series)Release 22: ; IOP series in emerging technologies in optics and photonics: ; IOP ebooks2022 collection: Publisher: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2022]Description: 1 online resource (various pagings) : illustrations (some color).Content type: text Media type: electronic Carrier type: online resourceISBN: 9780750347051; 9780750347044.Other title: Fundamentals to freeform adaptive optics.Subject(s): Optics, Adaptive | Optical physics | Optics and photonicsAdditional physical formats: Print version:: No titleDDC classification: 621.36/9 Online resources: Click here to access online Also available in print.
Contents:
part I. Introduction to optical path theory. 1. The path of light -- 1.1. Purpose and introduction to this treatise -- 1.2. The optical path and Fermat's principle -- 1.3. The law of reflection -- 1.4. The law of refraction -- 1.5. The vector form of Snell's law -- 1.6. The wavefront and the Malus-Dupin theorem -- 1.7. Optical path difference and phase difference -- 1.8. Stigmatism and aberrated wavefronts -- 1.9. Adaptive optics -- 1.10. Optical testing -- 1.11. End notes
part II. Aspheric optical systems and the path of light. 2. General catoptric stigmatic surfaces -- 2.1. The crux of adaptive optics -- 2.2. General equation for deformable mirrors for images at a finite distance -- 2.3. The eikonal, the wavefront, and ray tracing -- 2.4. Mathematica code -- 2.5. Examples -- 2.6. The general equation for deformable mirrors for images at infinity -- 2.7. The eikonal, the wavefront, and ray tracing -- 2.8. Mathematica code -- 2.9. Examples -- 2.10. End notes
3. General dioptric stigmatic surfaces -- 3.1. A more general solution than Cartesian ovals -- 3.2. General equation for stigmatic surfaces for images at finite distances -- 3.3. The wavefronts of images at finite distances -- 3.4. Mathematica code -- 3.5. Examples -- 3.6. The general equation for stigmatic surfaces for images at infinity -- 3.7. The wavefronts of images at infinity -- 3.8. Mathematica code -- 3.9. Examples -- 3.10. End notes
4. The aspheric transfer-function lens -- 4.1. Transfer functions -- 4.2. Mathematical model of the planar transfer-function lens -- 4.3. Ray tracing light passing through the transfer-function lens -- 4.4. Mathematica code -- 4.5. Examples -- 4.6. End notes
5. General equation for the aspheric wavefront generator lens -- 5.1. Introduction -- 5.2. Mathematical model for adaptive optics for finite images -- 5.3. The wavefront generator lens for images at finite distances -- 5.4. Mathematica code -- 5.5. Examples -- 5.6. Mathematical model for wavefront generator lenses for images at infinity -- 5.7. Wavefront of the wavefront generator lens for images at infinity -- 5.8. Mathematica code -- 5.9. Examples -- 5.10. End notes
part III. Freeform optical systems and the path of light. 6. General mirror for adaptive optical systems -- 6.1. The crux of adaptive optics -- 6.2. The general formula for freeform deformable mirrors for images at finite distances -- 6.3. The wavefront for finite images -- 6.4. Mathematica code -- 6.5. Examples -- 6.6. The crux of adaptive optics -- 6.7. The eikonal of the crux of adaptive optics -- 6.8. Mathematica code -- 6.9. Examples -- 6.10. End notes
7. General freeform dioptric stigmatic surfaces -- 7.1. Introduction -- 7.2. Mathematical model of freeform stigmatic surfaces for images at finite distances -- 7.3. The wavefronts of images at finite distances -- 7.4. Mathematica -- 7.5. Examples -- 7.6. Mathematical model of freeform stigmatic surfaces for images at infinity -- 7.7. The wavefront and the collimated output rays -- 7.8. Mathematica code -- 7.9. Examples -- 7.10. End notes
8. The freeform transfer function lens -- 8.1. Introduction -- 8.2. Mathematical model -- 8.3. Ray tracing of light passing through the transfer function lens -- 8.4. Mathematica code -- 8.5. Examples -- 8.6. End notes
9. General equation of the freeform wavefront generator lens -- 9.1. Introduction -- 9.2. Mathematical model for freeform wavefront generator lenses -- 9.3. The wavefront produced by the wavefront generator lens for finite images -- 9.4. Mathematica code -- 9.5. Examples -- 9.6. End notes.
Abstract: This book is mostly based in an equation that was recently published. The equation is the general formula for adaptive optics mirrors, which was published in January 2021--General mirror formula for adaptive optics, Applied Optics 60(2).
    average rating: 0.0 (0 votes)
No physical items for this record

"Version: 20220601"--Title page verso.

Includes bibliographical references.

part I. Introduction to optical path theory. 1. The path of light -- 1.1. Purpose and introduction to this treatise -- 1.2. The optical path and Fermat's principle -- 1.3. The law of reflection -- 1.4. The law of refraction -- 1.5. The vector form of Snell's law -- 1.6. The wavefront and the Malus-Dupin theorem -- 1.7. Optical path difference and phase difference -- 1.8. Stigmatism and aberrated wavefronts -- 1.9. Adaptive optics -- 1.10. Optical testing -- 1.11. End notes

part II. Aspheric optical systems and the path of light. 2. General catoptric stigmatic surfaces -- 2.1. The crux of adaptive optics -- 2.2. General equation for deformable mirrors for images at a finite distance -- 2.3. The eikonal, the wavefront, and ray tracing -- 2.4. Mathematica code -- 2.5. Examples -- 2.6. The general equation for deformable mirrors for images at infinity -- 2.7. The eikonal, the wavefront, and ray tracing -- 2.8. Mathematica code -- 2.9. Examples -- 2.10. End notes

3. General dioptric stigmatic surfaces -- 3.1. A more general solution than Cartesian ovals -- 3.2. General equation for stigmatic surfaces for images at finite distances -- 3.3. The wavefronts of images at finite distances -- 3.4. Mathematica code -- 3.5. Examples -- 3.6. The general equation for stigmatic surfaces for images at infinity -- 3.7. The wavefronts of images at infinity -- 3.8. Mathematica code -- 3.9. Examples -- 3.10. End notes

4. The aspheric transfer-function lens -- 4.1. Transfer functions -- 4.2. Mathematical model of the planar transfer-function lens -- 4.3. Ray tracing light passing through the transfer-function lens -- 4.4. Mathematica code -- 4.5. Examples -- 4.6. End notes

5. General equation for the aspheric wavefront generator lens -- 5.1. Introduction -- 5.2. Mathematical model for adaptive optics for finite images -- 5.3. The wavefront generator lens for images at finite distances -- 5.4. Mathematica code -- 5.5. Examples -- 5.6. Mathematical model for wavefront generator lenses for images at infinity -- 5.7. Wavefront of the wavefront generator lens for images at infinity -- 5.8. Mathematica code -- 5.9. Examples -- 5.10. End notes

part III. Freeform optical systems and the path of light. 6. General mirror for adaptive optical systems -- 6.1. The crux of adaptive optics -- 6.2. The general formula for freeform deformable mirrors for images at finite distances -- 6.3. The wavefront for finite images -- 6.4. Mathematica code -- 6.5. Examples -- 6.6. The crux of adaptive optics -- 6.7. The eikonal of the crux of adaptive optics -- 6.8. Mathematica code -- 6.9. Examples -- 6.10. End notes

7. General freeform dioptric stigmatic surfaces -- 7.1. Introduction -- 7.2. Mathematical model of freeform stigmatic surfaces for images at finite distances -- 7.3. The wavefronts of images at finite distances -- 7.4. Mathematica -- 7.5. Examples -- 7.6. Mathematical model of freeform stigmatic surfaces for images at infinity -- 7.7. The wavefront and the collimated output rays -- 7.8. Mathematica code -- 7.9. Examples -- 7.10. End notes

8. The freeform transfer function lens -- 8.1. Introduction -- 8.2. Mathematical model -- 8.3. Ray tracing of light passing through the transfer function lens -- 8.4. Mathematica code -- 8.5. Examples -- 8.6. End notes

9. General equation of the freeform wavefront generator lens -- 9.1. Introduction -- 9.2. Mathematical model for freeform wavefront generator lenses -- 9.3. The wavefront produced by the wavefront generator lens for finite images -- 9.4. Mathematica code -- 9.5. Examples -- 9.6. End notes.

This book is mostly based in an equation that was recently published. The equation is the general formula for adaptive optics mirrors, which was published in January 2021--General mirror formula for adaptive optics, Applied Optics 60(2).

Optical engineers, academics in optics and physics.

Also available in print.

Mode of access: World Wide Web.

System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.

Rafael G. Gonz�alez-Acu�ana studied industrial physics engineering at the Tecnol�ogico de Monterrey gaining a master's degree in optomechatronics at the Optics Research Center, A.C., and studied his PhD at the Tecnol�ogico de Monterrey. H�ector A Chaparro-Romo, Electronic Engineer with Master's studies in Computer Science specialised in scientific computation and years of experience in optics research and applications, he is co-author of the solution to the problem of designing bi-aspheric singlet lenses free of spherical aberration.

Title from PDF title page (viewed on July 5, 2022).

There are no comments for this item.

Log in to your account to post a comment.