000 | 03895nam a22004935i 4500 | ||
---|---|---|---|
001 | 978-1-4614-6666-6 | ||
003 | DE-He213 | ||
005 | 20200421112046.0 | ||
007 | cr nn 008mamaa | ||
008 | 130625s2013 xxu| s |||| 0|eng d | ||
020 |
_a9781461466666 _9978-1-4614-6666-6 |
||
024 | 7 |
_a10.1007/978-1-4614-6666-6 _2doi |
|
050 | 4 | _aQ342 | |
072 | 7 |
_aUYQ _2bicssc |
|
072 | 7 |
_aCOM004000 _2bisacsh |
|
082 | 0 | 4 |
_a006.3 _223 |
245 | 1 | 0 |
_aAdvances in Type-2 Fuzzy Sets and Systems _h[electronic resource] : _bTheory and Applications / _cedited by Alireza Sadeghian, Jerry M. Mendel, Hooman Tahayori. |
264 | 1 |
_aNew York, NY : _bSpringer New York : _bImprint: Springer, _c2013. |
|
300 |
_aX, 262 p. 103 illus., 41 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aStudies in Fuzziness and Soft Computing, _x1434-9922 ; _v301 |
|
505 | 0 | _aPart 1 - Theoretical Foundations -- Interval Type-2 Fuzzy Logic Systems and Perceptual Computers: Their Similarities and Differences -- Continuous Karnik-Mendel Algorithms and Their Generalizations -- Two Differences Between Interval Type-2 and Type-1 Fuzzy Logic Controllers: Adaptiveness and Novelty -- Interval Type-2 Fuzzy Markov Chains -- zSlices Based General Type-2 Fuzzy Sets and Systems -- Geometric Type-2 Fuzzy Sets -- Type-2 Fuzzy Sets and Bichains -- Type-2 Fuzzy Sets and Conceptual Spaces -- Part B- Type-2 Fuzzy Set Membership Function Generation -- Modeling Complex Concepts with Type-2 Fuzzy Sets: The Case of User Satisfaction of Online Services.- Construction of Interval type-2 fuzzy sets from fuzzy sets. Methods and applications -- Interval type-2 fuzzy membership function generation methods for representing sample data -- Part C - Applications -- ype-2 Fuzzy Logic in Image Analysis and Pattern Recognition -- Reliable Tool Life Estimation with Multiple Acoustic Emission Signal Feature Selection and Integration Based on Type-2 Fuzzy Logic -- A Review of Cluster Validation with an Example of Type-2 Fuzzy Application in R -- Type-2 Fuzzy Set and Fuzzy Ontology for Diet Application. | |
520 | _aThis book explores recent developments in the theoretical foundations and novel applications of general and interval type-2 fuzzy sets and systems, including: algebraic properties of type-2 fuzzy sets, geometric-based definition of type-2 fuzzy set operators, generalizations of the continuous KM algorithm, adaptiveness and novelty of interval type-2 fuzzy logic controllers, relations between conceptual spaces and type-2 fuzzy sets, type-2 fuzzy logic systems versus perceptual computers; modeling human perception of real world concepts with type-2 fuzzy sets, different methods for generating membership functions of interval and general type-2 fuzzy sets, and applications of interval type-2 fuzzy sets to control, machine tooling, image processing and diet. The applications demonstrate the appropriateness of using type-2 fuzzy sets and systems in real world problems that are characterized by different degrees of uncertainty. | ||
650 | 0 | _aEngineering. | |
650 | 0 | _aArtificial intelligence. | |
650 | 0 | _aComputational intelligence. | |
650 | 1 | 4 | _aEngineering. |
650 | 2 | 4 | _aComputational Intelligence. |
650 | 2 | 4 | _aArtificial Intelligence (incl. Robotics). |
700 | 1 |
_aSadeghian, Alireza. _eeditor. |
|
700 | 1 |
_aMendel, Jerry M. _eeditor. |
|
700 | 1 |
_aTahayori, Hooman. _eeditor. |
|
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer eBooks | |
776 | 0 | 8 |
_iPrinted edition: _z9781461466659 |
830 | 0 |
_aStudies in Fuzziness and Soft Computing, _x1434-9922 ; _v301 |
|
856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-1-4614-6666-6 |
912 | _aZDB-2-ENG | ||
942 | _cEBK | ||
999 |
_c56907 _d56907 |