000 03221nam a22005415i 4500
001 978-3-319-17163-0
003 DE-He213
005 20200421112220.0
007 cr nn 008mamaa
008 150331s2015 gw | s |||| 0|eng d
020 _a9783319171630
_9978-3-319-17163-0
024 7 _a10.1007/978-3-319-17163-0
_2doi
050 4 _aTK5102.9
050 4 _aTA1637-1638
050 4 _aTK7882.S65
072 7 _aTTBM
_2bicssc
072 7 _aUYS
_2bicssc
072 7 _aTEC008000
_2bisacsh
072 7 _aCOM073000
_2bisacsh
082 0 4 _a621.382
_223
100 1 _aRao, K. Sreenivasa.
_eauthor.
245 1 0 _aLanguage Identification Using Spectral and Prosodic Features
_h[electronic resource] /
_cby K. Sreenivasa Rao, V. Ramu Reddy, Sudhamay Maity.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2015.
300 _aXI, 98 p. 21 illus., 5 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringerBriefs in Electrical and Computer Engineering,
_x2191-8112
505 0 _a Introduction.- Literature Review -- Language Identification using Spectral Features -- Language Identification using Prosodic Features -- Summary and Conclusions -- Appendix A: LPCC Features -- Appendix B: MFCC Features --  Appendix C: Gaussian Mixture Model (GMM).
520 _aThis book discusses the impact of spectral features extracted from frame level, glottal closure regions, and pitch-synchronous analysis on the performance of language identification systems. In addition to spectral features, the authors explore prosodic features such as intonation, rhythm, and stress features for discriminating the languages. They present how the proposed spectral and prosodic features capture the language specific information from two complementary aspects, showing how the development of language identification (LID) system using the combination of spectral and prosodic features will enhance the accuracy of identification as well as improve the robustness of the system. This book provides the methods to extract the spectral and prosodic features at various levels, and also suggests the appropriate models for developing robust LID systems according to specific spectral and prosodic features. Finally, the book discuss about various combinations of spectral and prosodic features, and the desired models to enhance the performance of LID systems.
650 0 _aEngineering.
650 0 _aComputational linguistics.
650 1 4 _aEngineering.
650 2 4 _aSignal, Image and Speech Processing.
650 2 4 _aLanguage Translation and Linguistics.
650 2 4 _aComputational Linguistics.
700 1 _aReddy, V. Ramu.
_eauthor.
700 1 _aMaity, Sudhamay.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783319171623
830 0 _aSpringerBriefs in Electrical and Computer Engineering,
_x2191-8112
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-319-17163-0
912 _aZDB-2-ENG
942 _cEBK
999 _c57324
_d57324