000 03323nam a22005415i 4500
001 978-3-319-21858-8
003 DE-He213
005 20200421112231.0
007 cr nn 008mamaa
008 151005s2015 gw | s |||| 0|eng d
020 _a9783319218588
_9978-3-319-21858-8
024 7 _a10.1007/978-3-319-21858-8
_2doi
050 4 _aQ334-342
050 4 _aTJ210.2-211.495
072 7 _aUYQ
_2bicssc
072 7 _aTJFM1
_2bicssc
072 7 _aCOM004000
_2bisacsh
082 0 4 _a006.3
_223
100 1 _aBol�on-Canedo, Ver�onica.
_eauthor.
245 1 0 _aFeature Selection for High-Dimensional Data
_h[electronic resource] /
_cby Ver�onica Bol�on-Canedo, Noelia S�anchez-Maro�no, Amparo Alonso-Betanzos.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2015.
300 _aXV, 147 p. 16 illus., 8 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aArtificial Intelligence: Foundations, Theory, and Algorithms,
_x2365-3051
505 0 _aIntroduction to High-Dimensionality -- Foundations of Feature Selection -- Experimental Framework -- Critical Review of Feature Selection Methods -- Application of Feature Selection to Real Problems -- Emerging Challenges.
520 _aThis book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data.   The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms. They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data, intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers.   The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining.
650 0 _aComputer science.
650 0 _aData structures (Computer science).
650 0 _aData mining.
650 0 _aArtificial intelligence.
650 1 4 _aComputer Science.
650 2 4 _aArtificial Intelligence (incl. Robotics).
650 2 4 _aData Mining and Knowledge Discovery.
650 2 4 _aData Structures.
700 1 _aS�anchez-Maro�no, Noelia.
_eauthor.
700 1 _aAlonso-Betanzos, Amparo.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783319218571
830 0 _aArtificial Intelligence: Foundations, Theory, and Algorithms,
_x2365-3051
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-319-21858-8
912 _aZDB-2-SCS
942 _cEBK
999 _c57968
_d57968