000 03029nam a22005055i 4500
001 978-3-319-14231-9
003 DE-He213
005 20200421112545.0
007 cr nn 008mamaa
008 150204s2015 gw | s |||| 0|eng d
020 _a9783319142319
_9978-3-319-14231-9
024 7 _a10.1007/978-3-319-14231-9
_2doi
050 4 _aQA76.9.D343
072 7 _aUNF
_2bicssc
072 7 _aUYQE
_2bicssc
072 7 _aCOM021030
_2bisacsh
082 0 4 _a006.312
_223
100 1 _aBarros, Rodrigo C.
_eauthor.
245 1 0 _aAutomatic Design of Decision-Tree Induction Algorithms
_h[electronic resource] /
_cby Rodrigo C. Barros, Andr�e C.P.L.F de Carvalho, Alex A. Freitas.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2015.
300 _aXII, 176 p. 18 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringerBriefs in Computer Science,
_x2191-5768
505 0 _aIntroduction -- Decision-Tree Induction -- Evolutionary Algorithms and Hyper-Heuristics -- HEAD-DT: Automatic Design of Decision-Tree Algorithms -- HEAD-DT: Experimental Analysis -- HEAD-DT: Fitness Function Analysis -- Conclusions.
520 _aPresents a detailed study of the major design components that constitute a top-down decision-tree induction algorithm, including aspects such as split criteria, stopping criteria, pruning and the approaches for dealing with missing values. Whereas the strategy still employed nowadays is to use a 'generic' decision-tree induction algorithm regardless of the data, the authors argue on the benefits that a bias-fitting strategy could bring to decision-tree induction, in which the ultimate goal is the automatic generation of a decision-tree induction algorithm tailored to the application domain of interest. For such, they discuss how one can effectively discover the most suitable set of components of decision-tree induction algorithms to deal with a wide variety of applications through the paradigm of evolutionary computation, following the emergence of a novel field called hyper-heuristics. "Automatic Design of Decision-Tree Induction Algorithms" would be highly useful for machine learning and evolutionary computation students and researchers alike.
650 0 _aComputer science.
650 0 _aData mining.
650 0 _aPattern recognition.
650 1 4 _aComputer Science.
650 2 4 _aData Mining and Knowledge Discovery.
650 2 4 _aPattern Recognition.
700 1 _ade Carvalho, Andr�e C.P.L.F.
_eauthor.
700 1 _aFreitas, Alex A.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783319142302
830 0 _aSpringerBriefs in Computer Science,
_x2191-5768
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-319-14231-9
912 _aZDB-2-SCS
942 _cEBK
999 _c58492
_d58492