000 13051nam a2201417 i 4500
001 5236578
003 IEEE
005 20200421114110.0
006 m o d
007 cr |n|||||||||
008 081029t20152008enk o 000 0 eng d
020 _a9780470377888
_qelectronic
020 _z9780470229750
_qpaper
020 _z0470377887
_qelectronic
024 7 _a10.1002/9780470377888
_2doi
035 _a(CaBNVSL)mat05236578
035 _a(IDAMS)0b00006481094c10
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aQ335
_b.J46 2008eb
082 0 4 _a006.30151132
_222
100 1 _aJensen, Richard.
_eauthor.
245 1 0 _aComputational intelligence and feature selection :
_brough and fuzzy approaches /
_cby Richard Jensen, Qiang Shen.
264 1 _aOxford :
_bWiley-Blackwell,
_c2008.
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c2008.
300 _a1 PDF (300 pages).
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _aIEEE Press series on computational intelligence ;
_v8
505 0 _aPREFACE -- 1 THE IMPORTANCE OF FEATURE SELECTION -- 1.1. Knowledge Discovery -- 1.2. Feature Selection -- 1.2.1. The Task -- 1.2.2. The Benefits -- 1.3. Rough Sets -- 1.4. Applications -- 1.5. Structure -- 2 SET THEORY -- 2.1. Classical Set Theory -- 2.1.1. Definition -- 2.1.2. Subsets -- 2.1.3. Operators -- 2.2. Fuzzy Set Theory -- 2.2.1. Definition -- 2.2.2. Operators -- 2.2.3. Simple Example -- 2.2.4. Fuzzy Relations and Composition -- 2.2.5. Approximate Reasoning -- 2.2.6. Linguistic Hedges -- 2.2.7. Fuzzy Sets and Probability -- 2.3. Rough Set Theory -- 2.3.1. Information and Decision Systems -- 2.3.2. Indiscernibility -- 2.3.3. Lower and Upper Approximations -- 2.3.4. Positive, Negative, and Boundary Regions -- 2.3.5. Feature Dependency and Significance -- 2.3.6. Reducts -- 2.3.7. Discernibility Matrix -- 2.4. Fuzzy-Rough Set Theory -- 2.4.1. Fuzzy Equivalence Classes -- 2.4.2. Fuzzy-Rough Sets -- 2.4.3. Rough-Fuzzy Sets -- 2.4.4. Fuzzy-Rough Hybrids -- 2.5. Summary -- 3 CLASSIFICATION METHODS -- 3.1. Crisp Approaches -- 3.1.1. Rule Inducers -- 3.1.2. Decision Trees -- 3.1.3. Clustering -- 3.1.4. Naive Bayes -- 3.1.5. Inductive Logic Programming -- 3.2. Fuzzy Approaches -- 3.2.1. Lozowski's Method -- 3.2.2. Subsethood-Based Methods -- 3.2.3. Fuzzy Decision Trees -- 3.2.4. Evolutionary Approaches -- 3.3. Rulebase Optimization -- 3.3.1. Fuzzy Interpolation -- 3.3.2. Fuzzy Rule Optimization -- 3.4. Summary -- 4 DIMENSIONALITY REDUCTION -- 4.1. Transformation-Based Reduction -- 4.1.1. Linear Methods -- 4.1.2. Nonlinear Methods -- 4.2. Selection-Based Reduction -- 4.2.1. Filter Methods -- 4.2.2. Wrapper Methods -- 4.2.3. Genetic Approaches -- 4.2.4. Simulated Annealing Based Feature Selection -- 4.3. Summary -- 5 ROUGH SET BASED APPROACHES TO FEATURE SELECTION -- 5.1. Rough Set Attribute Reduction -- 5.1.1. Additional Search Strategies -- 5.1.2. Proof of QUICKREDUCT Monotonicity -- 5.2. RSAR Optimizations.
505 8 _a5.2.1. Implementation Goals -- 5.2.2. Implementational Optimizations -- 5.3. Discernibility Matrix Based Approaches -- 5.3.1. Johnson Reducer -- 5.3.2. Compressibility Algorithm -- 5.4. Reduction with Variable Precision Rough Sets -- 5.5. Dynamic Reducts -- 5.6. Relative Dependency Method -- 5.7. Tolerance-Based Method -- 5.7.1. Similarity Measures -- 5.7.2. Approximations and Dependency -- 5.8. Combined Heuristic Method -- 5.9. Alternative Approaches -- 5.10. Comparison of Crisp Approaches -- 5.10.1. Dependency Degree Based Approaches -- 5.10.2. Discernibility Matrix Based Approaches -- 5.11. Summary -- 6 APPLICATIONS I: USE OF RSAR -- 6.1. Medical Image Classification -- 6.1.1. Problem Case -- 6.1.2. Neural Network Modeling -- 6.1.3. Results -- 6.2. Text Categorization -- 6.2.1. Problem Case -- 6.2.2. Metrics -- 6.2.3. Datasets Used -- 6.2.4. Dimensionality Reduction -- 6.2.5. Information Content of Rough Set Reducts -- 6.2.6. Comparative Study of TC Methodologies -- 6.2.7. Efficiency Considerations of RSAR -- 6.2.8. Generalization -- 6.3. Algae Estimation -- 6.3.1. Problem Case -- 6.3.2. Results -- 6.4. Other Applications -- 6.4.1. Prediction of Business Failure -- 6.4.2. Financial Investment -- 6.4.3. Bioinformatics and Medicine -- 6.4.4. Fault Diagnosis -- 6.4.5. Spacial and Meteorological Pattern Classification -- 6.4.6. Music and Acoustics -- 6.5. Summary -- 7 ROUGH AND FUZZY HYBRIDIZATION -- 7.1. Introduction -- 7.2. Theoretical Hybridization -- 7.3. Supervised Learning and Information Retrieval -- 7.4. Feature Selection -- 7.5. Unsupervised Learning and Clustering -- 7.6. Neurocomputing -- 7.7. Evolutionary and Genetic Algorithms -- 7.8. Summary -- 8 FUZZY-ROUGH FEATURE SELECTION -- 8.1. Feature Selection with Fuzzy-Rough Sets -- 8.2. Fuzzy-Rough Reduction Process -- 8.3. Fuzzy-Rough QuickReduct -- 8.4. Complexity Analysis -- 8.5. Worked Examples -- 8.5.1. Crisp Decisions -- 8.5.2. Fuzzy Decisions.
505 8 _a8.6. Optimizations -- 8.7. Evaluating the Fuzzy-Rough Metric -- 8.7.1. Compared Metrics -- 8.7.2. Metric Comparison -- 8.7.3. Application to Financial Data -- 8.8. Summary -- 9 NEW DEVELOPMENTS OF FRFS -- 9.1. Introduction -- 9.2. New Fuzzy-Rough Feature Selection -- 9.2.1. Fuzzy Lower Approximation Based FS -- 9.2.2. Fuzzy Boundary Region Based FS -- 9.2.3. Fuzzy-Rough Reduction with Fuzzy Entropy -- 9.2.4. Fuzzy-Rough Reduction with Fuzzy Gain Ratio -- 9.2.5. Fuzzy Discernibility Matrix Based FS -- 9.2.6. Vaguely Quantified Rough Sets (VQRS) -- 9.3. Experimentation -- 9.3.1. Experimental Setup -- 9.3.2. Experimental Results -- 9.3.3. Fuzzy Entropy Experimentation -- 9.4. Proofs -- 9.5. Summary -- 10 FURTHER ADVANCED FS METHODS -- 10.1. Feature Grouping -- 10.1.1. Fuzzy Dependency -- 10.1.2. Scaled Dependency -- 10.1.3. The Feature Grouping Algorithm -- 10.1.4. Selection Strategies -- 10.1.5. Algorithmic Complexity -- 10.2. Ant Colony Optimization-Based Selection -- 10.2.1. Ant Colony Optimization -- 10.2.2. Traveling Salesman Problem -- 10.2.3. Ant-Based Feature Selection -- 10.3. Summary -- 11 APPLICATIONS II: WEB CONTENT CATEGORIZATION -- 11.1. Text Categorization -- 11.1.1. Rule-Based Classification -- 11.1.2. Vector-Based Classification -- 11.1.3. Latent Semantic Indexing -- 11.1.4. Probabilistic -- 11.1.5. Term Reduction -- 11.2. System Overview -- 11.3. Bookmark Classification -- 11.3.1. Existing Systems -- 11.3.2. Overview -- 11.3.3. Results -- 11.4. Web Site Classification -- 11.4.1. Existing Systems -- 11.4.2. Overview -- 11.4.3. Results -- 11.5. Summary -- 12 APPLICATIONS III: COMPLEX SYSTEMS MONITORING -- 12.1. The Application -- 12.1.1. Problem Case -- 12.1.2. Monitoring System -- 12.2. Experimental Results -- 12.2.1. Comparison with Unreduced Features -- 12.2.2. Comparison with Entropy-Based Feature Selection -- 12.2.3. Comparison with PCA and Random Reduction -- 12.2.4. Alternative Fuzzy Rule Inducer.
505 8 _a12.2.5. Results with Feature Grouping -- 12.2.6. Results with Ant-Based FRFS -- 12.3. Summary -- 13 APPLICATIONS IV: ALGAE POPULATION ESTIMATION -- 13.1. Application Domain -- 13.1.1. Domain Description -- 13.1.2. Predictors -- 13.2. Experimentation -- 13.2.1. Impact of Feature Selection -- 13.2.2. Comparison with Relief -- 13.2.3. Comparison with Existing Work -- 13.3. Summary -- 14 APPLICATIONS V: FORENSIC GLASS ANALYSIS -- 14.1. Background -- 14.2. Estimation of Likelihood Ratio -- 14.2.1. Exponential Model -- 14.2.2. Biweight Kernel Estimation -- 14.2.3. Likelihood Ratio with Biweight and Boundary Kernels -- 14.2.4. Adaptive Kernel -- 14.3. Application -- 14.3.1. Fragment Elemental Analysis -- 14.3.2. Data Preparation -- 14.3.3. Feature Selection -- 14.3.4. Estimators -- 14.4. Experimentation -- 14.4.1. Feature Evaluation -- 14.4.2. Likelihood Ratio Estimation -- 14.5. Glass Classification -- 14.6. Summary -- 15 SUPPLEMENTARY DEVELOPMENTS AND INVESTIGATIONS -- 15.1. RSAR-SAT -- 15.1.1. Finding Rough Set Reducts -- 15.1.2. Preprocessing Clauses -- 15.1.3. Evaluation -- 15.2. Fuzzy-Rough Decision Trees -- 15.2.1. Explanation -- 15.2.2. Experimentation -- 15.3. Fuzzy-Rough Rule Induction -- 15.4. Hybrid Rule Induction -- 15.4.1. Hybrid Approach -- 15.4.2. Rule Search -- 15.4.3. Walkthrough -- 15.4.4. Experimentation -- 15.5. Fuzzy Universal Reducts -- 15.6. Fuzzy-Rough Clustering -- 15.6.1. Fuzzy-Rough c-Means -- 15.6.2. General Fuzzy-Rough Clustering -- 15.7. Fuzzification Optimization -- 15.8. Summary -- APPENDIX A: METRIC COMPARISON RESULTS: CLASSIFICATION DATASETS -- APPENDIX B: METRIC COMPARISON RESULTS: REGRESSION DATASETS -- REFERENCES -- INDEX.
506 1 _aRestricted to subscribers or individual electronic text purchasers.
520 _aThe rough and fuzzy set approaches presented here open up many new frontiers for continued research and development Computational Intelligence and Feature Selection provides readers with the background and fundamental ideas behind Feature Selection (FS), with an emphasis on techniques based on rough and fuzzy sets. For readers who are less familiar with the subject, the book begins with an introduction to fuzzy set theory and fuzzy-rough set theory. Building on this foundation, the book provides: . A critical review of FS methods, with particular emphasis on their current limitations. Program files implementing major algorithms, together with the necessary instructions and datasets, available on a related Web site. Coverage of the background and fundamental ideas behind FS. A systematic presentation of the leading methods reviewed in a consistent algorithmic framework. Real-world applications with worked examples that illustrate the power and efficacy of the FS approaches covered. An investigation of the associated areas of FS, including rule induction and clustering methods using hybridizations of fuzzy and rough set theories Computational Intelligence and Feature Selection is an ideal resource for advanced undergraduates, postgraduates, researchers, and professional engineers. However, its straightforward presentation of the underlying concepts makes the book meaningful to specialists and nonspecialists alike.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
588 _aDescription based on PDF viewed 12/21/2015.
650 0 _aArtificial intelligence
_xMathematical models.
650 0 _aSet theory.
655 0 _aElectronic books.
695 _aAccidents
695 _aAccuracy
695 _aAdaptation model
695 _aAlgae
695 _aAnt colony optimization
695 _aApproximation methods
695 _aArtificial neural networks
695 _aBibliographies
695 _aBiomedical imaging
695 _aBlood vessels
695 _aBoolean functions
695 _aChemicals
695 _aClustering algorithms
695 _aCognition
695 _aComplexity theory
695 _aComputational intelligence
695 _aComputational modeling
695 _aCovariance matrix
695 _aCurrent measurement
695 _aData mining
695 _aDatabases
695 _aDecision trees
695 _aEquations
695 _aEstimation
695 _aExplosives
695 _aFeature extraction
695 _aForensics
695 _aFractals
695 _aFuzzy logic
695 _aFuzzy set theory
695 _aFuzzy sets
695 _aGaussian distribution
695 _aGlass
695 _aHeart
695 _aIndexes
695 _aIndexing
695 _aInformation systems
695 _aKernel
695 _aLarge scale integration
695 _aLead
695 _aLight emitting diodes
695 _aMachine learning
695 _aManifolds
695 _aManuals
695 _aMeasurement
695 _aMonitoring
695 _aNoise
695 _aNoise measurement
695 _aNumerical models
695 _aOptimization
695 _aPartitioning algorithms
695 _aPrediction algorithms
695 _aPrincipal component analysis
695 _aProbability distribution
695 _aRandom variables
695 _aRivers
695 _aRough sets
695 _aRuntime
695 _aSearch problems
695 _aSections
695 _aSemantics
695 _aSilicon
695 _aSupervised learning
695 _aTaxonomy
695 _aTesting
695 _aText categorization
695 _aTraining
695 _aTraining data
695 _aTransforms
695 _aUncertainty
695 _aUnsupervised learning
695 _aWeb pages
700 1 _aShen, Qiang.
710 2 _aJohn Wiley & Sons
_epublisher.
710 2 _aIEEE Xplore (Online service),
_edistributor.
776 0 8 _iPrint version:
_z9780470229750
830 0 _aIEEE Press series on computational intelligence ;
_v8
856 4 2 _3Abstract with links to resource
_uhttp://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5236578
942 _cEBK
999 _c59314
_d59314