000 09818nam a2201081 i 4500
001 6266785
003 IEEE
005 20200421114417.0
006 m o d
007 cr |n|||||||||
008 151221s2012 nju ob 001 eng d
020 _a9781118393550
_qebook
020 _z9781118266823
_qprint
020 _z1118393554
_qelectronic
020 _z9781118393505
_qelectronic
020 _z1118393503
_qelectronic
024 7 _a10.1002/9781118393550
_2doi
035 _a(CaBNVSL)mat06266785
035 _a(IDAMS)0b000064818b36cf
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aTK7881.4.
_bL47 2012eb
082 0 0 _a006.4/5
_223
100 1 _aLerch, Alexander,
_eauthor.
245 1 3 _aAn introduction to audio content analysis :
_bapplications in signal processing and music informatics /
_cAlexander Lerch.
264 1 _aHoboken, New Jersey :
_bWiley,
_cc2012.
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2012]
300 _a1 PDF (xxii, 248 pages).
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
504 _aIncludes bibliographical references.
505 8 _aMachine generated contents note: 1.1.Audio Content -- 1.2.A Generalized Audio Content Analysis System -- 2.1.Audio Signals -- 2.1.1.Periodic Signals -- 2.1.2.Random Signals -- 2.1.3.Sampling and Quantization -- 2.1.4.Statistical Signal Description -- 2.2.Signal Processing -- 2.2.1.Convolution -- 2.2.2.Block-Based Processing -- 2.2.3.Fourier Transform -- 2.2.4.Constant Q Transform -- 2.2.5.Auditory Filterbanks -- 2.2.6.Correlation Function -- 2.2.7.Linear Prediction -- 3.1.Audio Pre-Processing -- 3.1.1.Down-Mixing -- 3.1.2.DC Removal -- 3.1.3.Normalization -- 3.1.4.Down-Sampling -- 3.1.5.Other Pre-Processing Options -- 3.2.Statistical Properties -- 3.2.1.Arithmetic Mean -- 3.2.2.Geometric Mean -- 3.2.3.Harmonic Mean -- 3.2.4.Generalized Mean -- 3.2.5.Centroid -- 3.2.6.Variance and Standard Deviation -- 3.2.7.Skewness -- 3.2.8.Kurtosis -- 3.2.9.Generalized Central Moments -- 3.2.10.Quantiles and Quantile Ranges -- 3.3.Spectral Shape -- 3.3.1.Spectral Rolloff --
505 8 _aContents note continued: 3.3.2.Spectral Flux -- 3.3.3.Spectral Centroid -- 3.3.4.Spectral Spread -- 3.3.5.Spectral Decrease -- 3.3.6.Spectral Slope -- 3.3.7.Mel Frequency Cepstral Coefficients -- 3.4.Signal Properties -- 3.4.1.Tonalness -- 3.4.2.Autocorrelation Coefficients -- 3.4.3.Zero Crossing Rate -- 3.5.Feature Post-Processing -- 3.5.1.Derived Features -- 3.5.2.Normalization and Mapping -- 3.5.3.Subfeatures -- 3.5.4.Feature Dimensionality Reduction -- 4.1.Human Perception of Intensity and Loudness -- 4.2.Representation of Dynamics in Music -- 4.3.Features -- 4.3.1.Root Mean Square -- 4.4.Peak Envelope -- 4.5.Psycho-Acoustic Loudness Features -- 4.5.1.EBU R128 -- 5.1.Human Perception of Pitch -- 5.1.1.Pitch Scales -- 5.1.2.Chroma Perception -- 5.2.Representation of Pitch in Music -- 5.2.1.Pitch Classes and Names -- 5.2.2.Intervals -- 5.2.3.Root Note, Mode, and Key -- 5.2.4.Chords and Harmony -- 5.2.5.The Frequency of Musical Pitch -- 5.3.Fundamental Frequency Detection --
505 8 _aContents note continued: 5.3.1.Detection Accuracy -- 5.3.2.Pre-Processing -- 5.3.3.Monophonic Input Signals -- 5.3.4.Polyphonic Input Signals -- 5.4.Tuning Frequency Estimation -- 5.5.Key Detection -- 5.5.1.Pitch Chroma -- 5.5.2.Key Recognition -- 5.6.Chord Recognition -- 6.1.Human Perception of Temporal Events -- 6.1.1.Onsets -- 6.1.2.Tempo and Meter -- 6.1.3.Rhythm -- 6.1.4.Timing -- 6.2.Representation of Temporal Events in Music -- 6.2.1.Tempo and Time Signature -- 6.2.2.Note Value -- 6.3.Onset Detection -- 6.3.1.Novelty Function -- 6.3.2.Peak Picking -- 6.3.3.Evaluation -- 6.4.Beat Histogram -- 6.4.1.Beat Histogram Features -- 6.5.Detection of Tempo and Beat Phase -- 6.6.Detection of Meter and Downbeat -- 7.1.Dynamic Time Warping -- 7.1.1.Example -- 7.1.2.Common Variants -- 7.1.3.Optimizations -- 7.2.Audio-to-Audio Alignment -- 7.2.1.Ground Truth Data for Evaluation -- 7.3.Audio-to-Score Alignment -- 7.3.1.Real-Time Systems M -- 7.3.2.Non-Real-Time Systems --
505 8 _aContents note continued: 8.1.Musical Genre Classification -- 8.1.1.Musical Genre -- 8.1.2.Feature Extraction -- 8.1.3.Classification -- 8.2.Related Research Fields -- 8.2.1.Music Similarity Detection -- 8.2.2.Mood Classification -- 8.2.3.Instrument Recognition -- 9.1.Fingerprint Extraction -- 9.2.Fingerprint Matching -- 9.3.Fingerprinting System: Example -- 10.1.Musical Communication -- 10.1.1.Score -- 10.1.2.Music Performance -- 10.1.3.Production -- 10.1.4.Recipient -- 10.2.Music Performance Analysis -- 10.2.1.Analysis Data -- 10.2.2.Research Results -- A.1.Identity -- A.2.Commutativity -- A.3.Associativity -- A.4.Distributivity -- A.5.Circularity -- B.1.Properties of the Fourier Transformation -- B.1.1.Inverse Fourier Transform -- B.1.2.Superposition -- B.1.3.Convolution and Multiplication -- B.1.4.Parseval's Theorem -- B.1.5.Time and Frequency Shift -- B.1.6.Symmetry -- B.1.7.Time and Frequency Scaling -- B.1.8.Derivatives -- B.2.Spectrum of Example Time Domain Signals --
505 8 _aContents note continued: B.2.1.Delta Function -- B.2.2.Constant -- B.2.3.Cosine -- B.2.4.Rectangular Window -- B.2.5.Delta Pulse -- B.3.Transformation of Sampled Time Signals -- B.4.Short Time Fourier Transform of Continuous Signals -- B.4.1.Window Functions -- B.5.Discrete Fourier Transform -- B.5.1.Window Functions -- B.5.2.Fast Fourier Transform -- C.1.Computation of the Transformation Matrix -- C.2.Interpretation of the Transformation Matrix -- D.1.Software Frameworks and Applications -- D.1.1.Marsyas -- D.1.2.CLAM -- D.1.3.jMIR -- D.1.4.CoMIRVA -- D.1.5.Sonic Visualiser -- D.2.Software Libraries and Toolboxes -- D.2.1.Feature Extraction -- D.2.2.Plugin Interfaces -- D.2.3.Other Software.
506 1 _aRestricted to subscribers or individual electronic text purchasers.
520 _aAn easily accessible, hands-on approach to digital audio signal processingWith the proliferation of digital audio distribution over digital media, the amount of easily accessible music is ever-growing, requiring new tools for navigating, accessing, and retrieving music in meaningful ways. An understanding of audio content analysis is essential for the design of intelligent music information retrieval applications and content-adaptive audio processing systems.This book is about how to teach a computer to interpret music signals, thus allowing the design of tools for interacting with music. This book serves as a comprehensive guide on audio content analysis and how to apply it in signal processing and music informatics. Written by a well-known expert in the music industry, An Introduction to Audio Content Analysis ties together topics from audio signal processing and machine learning, showing how to use audio content analysis to pick up musical characteristics automatically. The author clearly explains the analysis of audio signals and the extraction of metadata describing the content of the signal, covering both abstract descriptions of technical properties and musical descriptions such as tempo, harmony and key, musical style, and performance attributes. Musical information is given a separate analysis in each category, whether tonal, pitch, harmony, key, temporal, or tempo, among others.Readers will get access to various analysis algorithms and learn to compare different standard approaches to the same task. The book includes a review of the fundamentals of audio signal processing, psychoacoustics, and music theory.An invaluable guide for newcomers to audio signal processing and industry experts alike, An Introduction to Audio Content Analysis also features downloadable MATLAB files from a companion website, www.AudioContentAnalysis.org, lists of abbreviations and symbols, and references.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
588 _aDescription based on PDF viewed 12/21/2015.
650 0 _aContent analysis (Communication)
_xData processing.
650 0 _aComputational auditory scene analysis.
650 0 _aComputer sound processing.
655 0 _aElectronic books.
695 _aAccuracy
695 _aAlgorithm design and analysis
695 _aAnalytical models
695 _aApproximation methods
695 _aBandwidth
695 _aBooks
695 _aContext
695 _aData mining
695 _aDatabases
695 _aDegradation
695 _aDistortion
695 _aFeature extraction
695 _aFingerprint recognition
695 _aFrequency measurement
695 _aHarmonic analysis
695 _aHeuristic algorithms
695 _aHumans
695 _aIndexes
695 _aInstruments
695 _aInterpolation
695 _aLow pass filters
695 _aMicrophones
695 _aMood
695 _aMultiple signal classification
695 _aMusic
695 _aPerformance analysis
695 _aProduction
695 _aQuantization
695 _aReal-time systems
695 _aRhythm
695 _aRobustness
695 _aRocks
695 _aSoftware
695 _aStandards
695 _aSupport vector machine classification
695 _aSynchronization
695 _aTaxonomy
695 _aTiming
695 _aTransfer functions
695 _aTransient analysis
695 _aVisualization
695 _aWatermarking
710 2 _aIEEE Xplore (Online Service),
_edistributor.
710 2 _aJohn Wiley & Sons,
_epublisher.
776 0 8 _iPrint version:
_z9781118266823
856 4 2 _3Abstract with links to resource
_uhttp://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6266785
942 _cEBK
999 _c59839
_d59839