000 03776cam a2200685Ii 4500
001 on1046676872
003 OCoLC
005 20220711203203.0
006 m o d
007 cr cnu|||unuuu
008 180731s2018 enk ob 001 0 eng d
040 _aN$T
_beng
_erda
_epn
_cN$T
_dN$T
_dYDX
_dOCLCF
_dCUS
_dCNCGM
_dUAB
_dRECBK
019 _a1047624845
020 _a9781119544029
020 _a1119544025
020 _a9781119544012
_q(electronic bk.)
020 _a1119544017
_q(electronic bk.)
020 _z9781786300447
020 _z1786300443
029 1 _aCHVBK
_b52970403X
029 1 _aCHNEW
_b001021086
035 _a(OCoLC)1046676872
_z(OCoLC)1047624845
050 4 _aQH352
072 7 _aNAT
_x010000
_2bisacsh
072 7 _aNAT
_x045040
_2bisacsh
072 7 _aSCI
_x026000
_2bisacsh
072 7 _aSCI
_x020000
_2bisacsh
082 0 4 _a577.88
_223
049 _aMAIN
100 1 _aLobry, C.
_q(Claude),
_eauthor.
_95080
245 1 4 _aThe consumer-resource relationship :
_bmathematical modeling /
_cClaude Lobry.
264 1 _aLondon :
_bISTE Ltd. ;
_aHoboken, NJ :
_bJohn Wiley & Sons, Inc.,
_c2018.
264 4 _c©2018
300 _a1 online resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aChemical engineering series (ISTE Ltd). Chemostat and bioprocesses set ;
_vvolume 2
504 _aIncludes bibliographical references and index.
588 0 _aOnline resource; title from PDF title page (EBSCO, viewed August 06, 2018).
520 _aBetter known as the "predator-prey relationship," the consumer-resource relationship means the situation where a single species of organisms consumes for survival and reproduction. For example, Escherichia coli consumes glucose, cows consume grass, cheetahs consume baboons; these three very different situations, the first concerns the world of bacteria and the resource is a chemical species, the second concerns mammals and the resource is a plant, and in the final case the consumer and the resource are mammals, have in common the fact of consuming. In a chemostat, microorganisms generally consume (abiotic) minerals, but not always, bacteriophages consume bacteria that constitute a biotic resource. 'The Chemostat' book dealt only with the case of abiotic resources. Mathematically this amounts to replacing in the two equation system of the chemostat the decreasing function by a general increasing then decreasing function. This simple change has greatly enriched the theory. This book shows in this new framework the problem of competition for the same resource.
650 0 _aPopulation biology
_xMathematical models.
_95081
650 0 _aPredation (Biology)
_xMathematical models.
_95082
650 0 _aChemostat
_xMathematical models.
_95083
650 0 _aBiomathematics.
_95084
650 7 _aNATURE / Ecology.
_2bisacsh
_95085
650 7 _aNATURE / Ecosystems & Habitats / Wilderness.
_2bisacsh
_95086
650 7 _aSCIENCE / Environmental Science.
_2bisacsh
_95087
650 7 _aSCIENCE / Life Sciences / Ecology.
_2bisacsh
_95088
650 7 _aBiomathematics.
_2fast
_0(OCoLC)fst00832555
_95084
650 7 _aChemostat
_xMathematical models.
_2fast
_0(OCoLC)fst00853590
_95083
650 7 _aPopulation biology
_xMathematical models.
_2fast
_0(OCoLC)fst01071538
_95081
650 7 _aPredation (Biology)
_xMathematical models.
_2fast
_0(OCoLC)fst01074992
_95082
655 4 _aElectronic books.
_93294
776 0 8 _cOriginal
_z1786300443
_z9781786300447
_w(OCoLC)962253623
830 0 _aChemical engineering series (ISTE Ltd).
_pChemostat and bioprocesses set ;
_vv. 2.
_95089
856 4 0 _uhttps://doi.org/10.1002/9781119544029
_zWiley Online Library
942 _cEBK
994 _a92
_bDG1
999 _c68413
_d68413