000 08332cam a22008178i 4500
001 on1008762473
003 OCoLC
005 20220711203257.0
006 m o d
007 cr |n|||||||||
008 171024s2018 nju ob 001 0 eng
010 _a 2017050886
040 _aDLC
_beng
_erda
_cDLC
_dOCLCO
_dOCLCF
_dOCLCQ
_dN$T
_dEBLCP
_dDG1
_dYDX
_dMERER
_dRECBK
_dUAB
_dOCLCQ
_dUIU
_dCOO
_dNLE
020 _a9781119218357
_q(electronic bk.)
020 _a1119218357
_q(electronic bk.)
020 _a9781119218333
_q(electronic bk. : oBook)
020 _a1119218330
_q(electronic bk. : oBook)
020 _z9781119218340
020 _z1119218349
020 _z9781119218326
_q(hardback)
029 1 _aCHVBK
_b516425706
029 1 _aCHNEW
_b001002989
029 1 _aGBVCP
_b1027305784
035 _a(OCoLC)1008762473
042 _apcc
050 1 0 _aRA856.4
072 7 _aHEA
_x012000
_2bisacsh
072 7 _aHEA
_x020000
_2bisacsh
072 7 _aMED
_x004000
_2bisacsh
072 7 _aMED
_x101000
_2bisacsh
072 7 _aMED
_x109000
_2bisacsh
072 7 _aMED
_x029000
_2bisacsh
072 7 _aMED
_x040000
_2bisacsh
072 7 _aMED
_x092000
_2bisacsh
082 0 0 _a610.28/4
_223
049 _aMAIN
100 1 _aJiang, Yu,
_d1990-
_eauthor.
_96051
245 1 0 _aCMOS integrated lab-on-a-chip system for personalized biomedical diagnosis /
_cYu Jiang, Nanyang Technological University, Singapore, Mei Yan, Illumina, US, Xiwei Huang, Hangzhou Dianzi University, China, Hao Yu, Nanyang Technological University, Singapore.
263 _a1805
264 1 _aHoboken, NJ :
_bWiley,
_c2018.
300 _a1 online resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 0 _aWiley - IEEE
504 _aIncludes bibliographical references and index.
588 0 _aPrint version record and CIP data provided by publisher; resource not viewed.
505 0 _aIntro; Title Page; Copyright Page; Contents; Preface; Chapter 1 Introduction; 1.1 Personalized Biomedical Diagnosis; 1.1.1 Personalized Diagnosis; 1.1.2 Conventional Biomedical Diagnostic Instruments; 1.1.2.1 Optical Microscope; 1.1.2.2 Flow Cytometer; 1.1.2.3 DNA Sequencer; 1.2 CMOS Sensor-based Lab-on-a-Chip for System Miniaturization; 1.2.1 CMOS Sensor-based Lab-on-a-Chip; 1.2.2 CMOS Sensor; 1.2.2.1 CMOS Process Fundamentals; 1.2.2.2 CMOS Sensor Technology; 1.2.2.3 Multimodal CMOS Sensor; 1.2.3 Microfluidics; 1.2.3.1 Microfluidic Fundamentals; 1.2.3.2 Microfluidics Fabrication
505 8 _a1.3 Objectives and Organization of this Book1.3.1 Objectives; 1.3.2 Organization; References; Chapter 2 CMOS Sensor Design; 2.1 Top Architecture; 2.2 Noise Overview; 2.2.1 Thermal Noise; 2.2.2 Flicker Noise; 2.2.3 Shot Noise; 2.2.4 MOSFET Noise Model; 2.3 Pixel Readout Circuit; 2.3.1 Source Follower; 2.3.2 Sub-threshold Gm Integrator; 2.3.3 CTIA; 2.4 Column Amplifier; 2.5 Column ADC; 2.5.1 Single-Slope ADC; 2.5.2 Sigma-Delta ADC; 2.6 Correlated Sampling; 2.6.1 Correlated Double Sampling; 2.6.2 Correlated Multiple Sampling; 2.7 Timing Control; 2.7.1 Row Timing Control
505 8 _a2.7.2 Column Timing Control2.8 LVDS Interface; References; Chapter 3 CMOS Impedance Sensor; 3.1 Introduction; 3.2 CMOS Impedance Pixel; 3.3 Readout Circuit; 3.4 A 96 × 96 Electronic Impedance Sensing System; 3.4.1 Top Architecture; 3.4.2 System Implementation; 3.4.2.1 System Setup; 3.4.2.2 Sample Preparation; 3.4.3 Results; 3.4.3.1 Data Fitting for Single Cell Impedance Measurement; 3.4.3.2 Cell and Electrode Impedance Analysis; 3.4.3.3 EIS for Single-Cell Impedance Enumeration; References; Chapter 4 CMOS Terahertz Sensor; 4.1 Introduction; 4.2 CMOS THz Pixel
505 8 _a4.2.1 Differential TL-SRR Resonator Design4.2.1.1 Stacked SRR Layout; 4.2.1.2 Comparison with Single-ended TL-SRR Resonator; 4.2.1.3 Comparison with Standing-Wave Resonator; 4.2.2 Differential TL-CSRR Resonator Design; 4.3 Readout Circuit; 4.3.1 Super-regenerative Amplification; 4.3.1.1 Equivalent Circuit of SRA; 4.3.1.2 Frequency Response of SRA; 4.3.1.3 Sensitivity of SRA; 4.3.2 Super-regenerative Receivers; 4.3.2.1 Quench-controlled Oscillation; 4.3.2.2 SRX Design by TL-CSRR; 4.3.2.3 SRX Design by TL-SRR; 4.4 A 135 GHz Imager; 4.4.1 135 GHz DTL-SRR-based Receiver
505 8 _a4.4.2 System Implementation4.4.3 Results; 4.5 Plasmonic Sensor for Circulating Tumor Cell Detection; 4.5.1 Introduction of CTC Detection; 4.5.2 SRR-based Oscillator for CTC Detection; 4.5.3 Sensitivity of SRR-based Oscillator; References; Chapter 5 CMOS Ultrasound Sensor; 5.1 Introduction; 5.2 CMUT Pixel; 5.3 Readout Circuit; 5.4 A 320 × 320 CMUT-based Ultrasound Imaging System; 5.4.1 Top Architecture; 5.4.2 System Implementation; 5.4.2.1 Process Selection; 5.4.2.2 High Voltage Pulser; 5.4.2.3 Low-Noise Preamplifier and High Voltage Switch; 5.4.3 Results; 5.4.3.1 Simulation Results
520 _aA thorough examination of lab-on-a-chip circuit-level operations to improve system performance A rapidly aging population demands rapid, cost-effective, flexible, personalized diagnostics. Existing systems tend to fall short in one or more capacities, making the development of alternatives a priority. CMOS Integrated Lab-on-a-Chip System for Personalized Biomedical Diagnosis provides insight toward the solution, with a comprehensive, multidisciplinary reference to the next wave of personalized medicine technology. A standard complementary metal oxide semiconductor (CMOS) fabrication technology allows mass-production of large-array, miniaturized CMOS-integrated sensors from multi-modal domains with smart on-chip processing capability. This book provides an in-depth examination of the design and mechanics considerations that make this technology a promising platform for microfluidics, micro-electro-mechanical systems, electronics, and electromagnetics. From CMOS fundamentals to end-user applications, all aspects of CMOS sensors are covered, with frequent diagrams and illustrations that clarify complex structures and processes. Detailed yet concise, and designed to help students and engineers develop smaller, cheaper, smarter lab-on-a-chip systems, this invaluable reference: -Provides clarity and insight on the design of lab-on-a-chip personalized biomedical sensors and systems -Features concise analyses of the integration of microfluidics and micro-electro-mechanical systems -Highlights the use of compressive sensing, super-resolution, and machine learning through the use of smart SoC processing -Discusses recent advances in complementary metal oxide semiconductor-integrated lab-on-a-chip systems -Includes guidance on DNA sequencing and cell counting applications using dual-mode chemical/optical and energy harvesting sensors The conventional reliance on the microscope, flow cytometry, and DNA sequencing leaves diagnosticians tied to bulky, expensive equipment with a central problem of scale. Lab-on-a-chip technology eliminates these constraints while improving accuracy and flexibility, ushering in a new era of medicine. This book is an essential reference for students, researchers, and engineers working in diagnostic circuitry and microsystems.'
650 0 _aMedical instruments and apparatus
_xResearch.
_96052
650 0 _aMetal oxide semiconductors, Complementary.
_93260
650 7 _aMedical instruments and apparatus
_xResearch.
_2fast
_0(OCoLC)fst01014226
_96052
650 7 _aMetal oxide semiconductors, Complementary.
_2fast
_0(OCoLC)fst01017635
_93260
650 7 _aHEALTH & FITNESS / Holism
_2bisacsh
_95217
650 7 _aHEALTH & FITNESS / Reference
_2bisacsh
_95218
650 7 _aMEDICAL / Alternative Medicine
_2bisacsh
_95219
650 7 _aMEDICAL / Atlases
_2bisacsh
_95220
650 7 _aMEDICAL / Essays
_2bisacsh
_95221
650 7 _aMEDICAL / Family & General Practice
_2bisacsh
_95222
650 7 _aMEDICAL / Holistic Medicine
_2bisacsh
_95223
650 7 _aMEDICAL / Osteopathy
_2bisacsh
_95224
655 4 _aElectronic books.
_93294
776 0 8 _iPrint version:
_aJiang, Yu, 1990-
_tCMOS integrated lab-on-a-chip system for personalized biomedical diagnosis.
_dHoboken, NJ : Wiley, 2018
_z9781119218326
_w(DLC) 2017049248
856 4 0 _uhttps://doi.org/10.1002/9781119218333
_zWiley Online Library
942 _cEBK
994 _a92
_bDG1
999 _c68587
_d68587