000 | 05836cam a2200709Ki 4500 | ||
---|---|---|---|
001 | ocn973882818 | ||
003 | OCoLC | ||
005 | 20220711203431.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 170227s2017 nju ob 001 0 eng d | ||
040 |
_aN$T _beng _erda _epn _cN$T _dDG1 _dIDEBK _dEBLCP _dYDX _dUPM _dMERUC _dCOO _dXPJ _dOTZ _dOCLCQ _dDKU _dOCLCQ _dDEBBG _dOCLCQ _dKSU |
||
019 |
_a974031976 _a974305235 _a974469065 _a974563173 _a974683088 _a974737105 _a974983850 _a975078424 |
||
020 |
_a9781119251064 _q(electronic bk.) |
||
020 |
_a1119251060 _q(electronic bk.) |
||
020 |
_a9781119251101 _q(electronic bk.) |
||
020 |
_a1119251109 _q(electronic bk.) |
||
020 | _z9781118454695 | ||
020 | _z1118454693 | ||
020 |
_z9781119251088 _q(epub) |
||
029 | 1 |
_aAU@ _b000061157111 |
|
029 | 1 |
_aCHBIS _b011081502 |
|
029 | 1 |
_aCHNEW _b000948333 |
|
029 | 1 |
_aCHVBK _b48302807X |
|
029 | 1 |
_aCHVBK _b502845821 |
|
029 | 1 |
_aDEBSZ _b48519838X |
|
035 |
_a(OCoLC)973882818 _z(OCoLC)974031976 _z(OCoLC)974305235 _z(OCoLC)974469065 _z(OCoLC)974563173 _z(OCoLC)974683088 _z(OCoLC)974737105 _z(OCoLC)974983850 _z(OCoLC)975078424 |
||
050 | 4 |
_aTP360 _b.M79 2017eb |
|
072 | 7 |
_aTEC _x009010 _2bisacsh |
|
082 | 0 | 4 |
_a662.6/25 _223 |
049 | _aMAIN | ||
245 | 0 | 0 |
_aMultiphase reactor engineering for clean and low-carbon energy applications / _cedited by Yi Cheng, Yong Jin. |
264 | 1 |
_aHoboken, New Jersey : _bJohn Wiley & Sons, Inc., _c[2017] |
|
300 | _a1 online resource | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
504 | _aIncludes bibliographical references and index. | ||
588 | 0 | _aPrint version record. | |
505 | 0 | _aTitle Page ; Copyright Page; Contents; Preface; List of Contributors; Chapter 1 Novel Fluid Catalytic Cracking Processes ; 1.1 FCC Process Description ; 1.2 Reaction Process Regulation for the Heavy Oil FCC ; 1.2.1 Technology Background; 1.2.2 Principle of the Technology; 1.2.3 Key Fundamental Research; 1.2.4 Industrial Validation; 1.3 Advanced Riser Termination Devices for the FCC Processes ; 1.3.1 Introduction; 1.3.2 General Idea of the Advanced RTD System; 1.3.3 Development of the External-Riser FCC RTD Systems; 1.3.4 Development of the Internal-Riser FCC RTDs. | |
505 | 8 | _a1.3.5 Conclusions and Perspectives1.4 An MZCC FCC Process; 1.4.1 Technology Background; 1.4.2 Reaction Principle for MZCC; 1.4.3 Design Principle of MZCC Reactor; 1.4.4 Key Basic Study; 1.4.5 The Industry Application of MZCC; 1.4.6 Prospectives; 1.5 Two-Stage Riser Fluid Catalytic Cracking Process ; 1.5.1 Preface; 1.5.2 Reaction Mechanism of Heavy Oil in the Riser Reactor; 1.5.3 The Proposed TSR FCC Process; 1.5.4 The Industrial Application of the TSR FCC Technology; 1.5.5 The Development of the TSR FCC Process; 1.6 FCC Gasoline Upgrading by Reducing Olefins Content Using SRFCC Process. | |
505 | 8 | _a1.6.1 Research Background1.6.2 Reaction Principle of Gasoline Upgrading; 1.6.3 Design and Optimization on the Subsidiary Riser; 1.6.4 Key Fundamental Researches; 1.6.5 Industrial Applications of the SRFCC Process; 1.6.6 Outlook; 1.7 FCC Process Perspectives ; References; Chapter 2 Coal Combustion ; 2.1 Fuel and Combustion Products; 2.1.1 Composition and Properties of Fuel; 2.1.2 Analysis of Compositions in the Fuel; 2.1.3 Calorific Value of Fuel; 2.1.4 Classifications of Coal; 2.1.5 Combustion Products and Enthalpy of Flue Gas; 2.2 Device and Combustion Theory of Gaseous Fuels. | |
505 | 8 | _a2.2.1 Ignition of the Gaseous Fuels2.2.2 Diffusion Gas Burner; 2.2.3 Fully Premixed-Type Gas Burner; 2.3 CCombustion Theory of Solid Fuel; 2.3.1 The Chemical Reaction Mechanism of Carbon Combustion; 2.3.2 Carbon Combustion Reaction Process; 2.4 Grate Firing of Coal; 2.4.1 Coal Grate Firing Facilities; 2.5 Coal Combustion in CFB Boiler; 2.5.1 The Characteristic of Fluidized Bed; 2.5.2 Combustion Characteristic of CFB Boiler; 2.5.3 Development of Circulating Fluidized Bed Combustion Technology; 2.5.4 Comparison Between Bubbling Fluidized bed and Circulating Fluidized Bed. | |
505 | 8 | _a2.6 Pulverized Coal Combustion2.6.1 Furnace Type of Pulverized Coal Combustion; 2.6.2 Circulation Mode of Water Wall; 2.6.3 Modern Large-Scale Pulverized Coal Combustion Technology ; 2.6.4 The International Development of the Supercritical Pressure Boiler; References; Chapter 3 Coal Gasification ; 3.1 Coal Water Slurry; 3.1.1 The Advantage of CWS; 3.1.2 The Production of CWS; 3.1.3 The Atomization of CWS; 3.2 The Theory of Coal Gasification; 3.2.1 Overview of Coal Gasification; 3.2.2 The Main Reaction Processes of Coal Gasification; 3.2.3 Kinetics of Coal Gasification Reaction. | |
520 | _aProvides a comprehensive review on the brand-new development of several multiphase reactor techniques applied in energy-related processes. | ||
650 | 0 |
_aSynthetic fuels. _97633 |
|
650 | 0 |
_aClean coal technologies. _97634 |
|
650 | 0 |
_aChemical reactors. _95233 |
|
650 | 0 |
_aClean energy. _97635 |
|
650 | 7 |
_aTECHNOLOGY & ENGINEERING _xChemical & Biochemical. _2bisacsh _94706 |
|
650 | 7 |
_aChemical reactors. _2fast _0(OCoLC)fst00853192 _95233 |
|
650 | 7 |
_aClean coal technologies. _2fast _0(OCoLC)fst01747225 _97634 |
|
650 | 7 |
_aClean energy. _2fast _0(OCoLC)fst01920487 _97635 |
|
650 | 7 |
_aSynthetic fuels. _2fast _0(OCoLC)fst01141224 _97633 |
|
655 | 4 |
_aElectronic books. _93294 |
|
700 | 1 |
_aCheng, Yi, _d1970- _eeditor. _97636 |
|
700 | 1 |
_aJin, Yong, _d1935- _eeditor. _97637 |
|
776 | 0 | 8 |
_iPrint version: _tMultiphase reactor engineering for clean and low-carbon energy applications. _dHoboken, New Jersey : John Wiley & Sons, Inc., [2017] _z9781118454695 _w(DLC) 2016041899 _w(OCoLC)964065538 |
856 | 4 | 0 |
_uhttps://doi.org/10.1002/9781119251101 _zWiley Online Library |
942 | _cEBK | ||
994 |
_a92 _bDG1 |
||
999 |
_c68920 _d68920 |