000 06088cam a2200709 i 4500
001 on1076457870
003 OCoLC
005 20220711203453.0
006 m o d
007 cr |||||||||||
008 181126t20192019njua ob 001 0 eng
010 _a 2018056369
040 _aDLC
_beng
_erda
_cDLC
_dOCLCO
_dOCLCF
_dYDX
_dN$T
_dEBLCP
_dDG1
_dYDX
019 _a1085890372
020 _a9781119247074
_qelectronic book
020 _a1119247071
_qelectronic book
020 _a9781119247135
_qelectronic book
020 _a1119247136
_qelectronic book
020 _a9781119247111
_qelectronic book
020 _a111924711X
_qelectronic book
020 _z9781119247081
_qhardcover
029 1 _aAU@
_b000065218956
029 1 _aCHVBK
_b565571729
029 1 _aCHNEW
_b001048773
035 _a(OCoLC)1076457870
_z(OCoLC)1085890372
042 _apcc
050 1 4 _aTK5103.2
_b.A147 2019
072 7 _aTEC
_x009070
_2bisacsh
082 0 0 _a621.3845/6
_223
049 _aMAIN
245 0 0 _a5G for the connected world /
_cedited by Devaki Chandramouli, Rainer Liebhart,, Juho Pirskanen, Kangasala, Finland.
250 _aFirst edition.
264 1 _aHoboken, NJ :
_bJohn Wiley & Sons, Inc.,
_c2019.
264 4 _c©2019
300 _a1 online resource (xlii, 471 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
504 _aIncludes bibliographical references and index.
520 _a"After the considerable success of LTE, why do we need a new system with a new radio and a new core? First, 5G will boost some of the LTE key performance indicators to a new horizon: capacity, latency, energy efficiency, spectral efficiency and reliability. We will describe the relevant radio and core features to enable optimizations (5G to be 10, 100 or 1000 times better than LTE) in these areas in respective chapters of the book"--
_cProvided by publisher.
505 0 _aCover; Title Page; Copyright; Contents; About the Editors; List of Contributors; Foreword by Tommi Uitto; Foreword by Karri Kuoppamaki; Preface; Acknowledgements; Introduction; Terminology; Chapter 1 Drivers and Motivation for 5G; 1.1 Drivers for 5G; 1.2 ITU-R and IMT 2020 Vision; 1.3 NGMN (Next Generation Mobile Networks); 1.4 5GPPP (5G Public-Private Partnership); 1.5 Requirements for Support of Known and New Services; 1.5.1 Massive IoT; 1.5.2 Time Critical Communication; 1.5.3 Enhanced Mobile Broadband (eMBB); 1.5.4 Enhanced Vehicular Communications; 1.5.5 Network Operations
505 8 _a1.6 5G Use Cases1.6.1 5G to the Home; 1.6.2 In-Vehicle Infotainment; 1.6.3 Hot Spots; 1.6.4 Truck Platooning; 1.6.5 Connected Health Care; 1.6.6 Industry 4.0; 1.6.7 Megacities; 1.7 Business Models; 1.7.1 Asset Provider Role; 1.7.2 Connectivity Provider Role; 1.7.3 Partner Service Provider Role; 1.8 Deployment Strategies; 1.9 3GPP Role and Timelines; References; Chapter 2 Wireless Spectrum for 5G; 2.1 Current Spectrum for Mobile Communication; 2.2 Spectrum Considerations for 5G; 2.3 Identified New Spectrum; 2.4 Spectrum Regulations; 2.4.1 Licensed Spectrum; 2.4.2 License-Exempt Spectrum
505 8 _a2.4.3 New Regulatory Approaches2.5 Characteristics of Spectrum Available for 5G; 2.5.1 Pathloss; 2.5.2 Multipath Propagation; 2.6 NR Bands Defined by 3GPP; References; Chapter 3 Radio Access Technology; 3.1 Evolution Toward 5G; 3.1.1 Introduction; 3.1.2 Pre-Standard Solutions; 3.2 Basic Building Blocks; 3.2.1 Waveforms for Downlink and Uplink; 3.2.2 Multiple Access; 3.2.3 5G Numerology and Frame Structures; 3.2.4 Bandwidth and Carrier Aggregation; 3.2.5 Massive MIMO (Massive Multiple Input Multiple Output); 3.2.6 Channel Coding; 3.2.6.1 Channel Coding for User Plane Data
505 8 _a3.2.6.2 Channel Coding for Physical Control Channels3.3 Downlink Physical Layer; 3.3.1 Synchronization and Cell Detection; 3.3.1.1 Primary Synchronization Signal (PSS); 3.3.1.2 Secondary Synchronization Signal (SSS); 3.3.1.3 Physical Broadcast Channel (PBCH); 3.3.1.4 SS Block Burst Set; 3.3.2 System Information Broadcast (SIB); 3.3.2.1 Remaining Minimum System Information (RMSI); 3.3.2.2 Other System Information; 3.3.3 Downlink Data Transmission; 3.4 Uplink Physical Layer; 3.4.1 Random Access; 3.4.1.1 Long Sequence; 3.4.1.2 Short Sequence; 3.4.2 Uplink Data Transmission
505 8 _a3.4.3 Contention-Based Access3.5 Radio Protocols; 3.5.1 Overall Radio Protocol Architecture; 3.5.2 Medium Access Control (MAC); 3.5.2.1 Logical Channels and Transport Channels; 3.5.2.2 MAC PDU Structures for Efficient Processing; 3.5.2.3 Procedures to Support UL Scheduling; 3.5.2.4 Discontinuous Reception and Transmission; 3.5.2.5 Random Access Procedure; 3.5.2.6 Beam Failure Management; 3.5.3 Radio Link Control (RLC); 3.5.3.1 Segmentation; 3.5.3.2 Error Correction Through ARQ; 3.5.3.3 Reduced RLC Functions for Efficient Processing; 3.5.4 Packet Data Convergence Protocol (PDCP)
588 _aDescription based on online resource; title from digital title page (viewed on April 11, 2019).
650 0 _aMobile communication systems
_xTechnological innovations.
_95962
650 0 _aBroadband communication systems
_vTechnological innovations.
_97981
650 0 _aWireless sensor networks
_vTechnological innovations.
_97982
650 7 _aBroadband communication systems.
_2fast
_0(OCoLC)fst00839147
_94551
650 7 _aMobile communication systems
_xTechnological innovations.
_2fast
_0(OCoLC)fst01024219
_95962
650 7 _aWireless sensor networks.
_2fast
_0(OCoLC)fst01746575
_96945
650 7 _aTECHNOLOGY & ENGINEERING / Mechanical.
_2bisacsh
_97983
655 4 _aElectronic books.
_93294
700 1 _aChandramouli, Devaki,
_eeditor.
_97984
700 1 _aLiebhart, Rainer,
_eeditor.
_97985
700 1 _aPirskanen, Juho,
_eeditor.
_97986
776 0 8 _iPrint version:
_t5G for the connected world
_bFirst edition.
_dHoboken, NJ : John Wiley & Sons, Inc., 2019
_z9781119247081
_w(DLC) 2018051891
856 4 0 _uhttps://doi.org/10.1002/9781119247111
_zWiley Online Library
942 _cEBK
994 _aC0
_bDG1
999 _c68992
_d68992