000 05708cam a2200625Ii 4500
001 on1096435591
003 OCoLC
005 20220711203514.0
006 m o d
007 cr cnu|||unuuu
008 190412s2019 enka ob 001 0 eng d
040 _aN$T
_beng
_erda
_epn
_cN$T
_dEBLCP
_dN$T
_dDG1
_dRECBK
_dUKAHL
_dOCLCF
_dOCLCQ
_dYDX
020 _a9781119608165
_q(electronic bk.)
020 _a1119608163
_q(electronic bk.)
020 _z9781786301581
029 1 _aAU@
_b000065306467
029 1 _aCHNEW
_b001050896
029 1 _aCHVBK
_b567422496
035 _a(OCoLC)1096435591
050 4 _aQA274.73
072 7 _aMAT
_x003000
_2bisacsh
072 7 _aMAT
_x029000
_2bisacsh
082 0 4 _a519.2/33
_223
049 _aMAIN
100 1 _aMichelitsch, Thomas,
_eauthor.
_98308
245 1 0 _aFractional dynamics on networks and lattices /
_cThomas Michelitsch, Alejandro Pérez Riascos, Bernard Collet, Andrzej Nowakowski, Franck Nicolleau.
264 1 _aLondon :
_bISTE Ltd. ;
_aHoboken :
_bJohn Wiley & Sons, Inc.,
_c2019.
300 _a1 online resource :
_billustrations
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMechanical engineering and solid mechanics series
588 0 _aOnline resource; title from PDF title page (EBSCO, viewed April 15, 2019).
504 _aIncludes bibliographical references and index.
505 8 _aCover; Half-Title Page; Title Page; Copyright Page; Contents; Preface; PART 1. Dynamics on General Networks; 1. Characterization of Networks: the Laplacian Matrix and its Functions; 1.1. Introduction; 1.2. Graph theory and networks; 1.2.1. Basic graph theory; 1.2.2. Networks; 1.3. Spectral properties of the Laplacian matrix; 1.3.1. Laplacian matrix; 1.3.2. General properties of the Laplacian eigenvalues and eigenvectors; 1.3.3. Spectra of some typical graphs; 1.4. Functions that preserve the Laplacian structure; 1.4.1. Function g(L) and general conditions
505 8 _a1.4.2. Non-negative symmetric matrices1.4.3. Completely monotonic functions; 1.5. General properties of g(L); 1.5.1. Diagonal elements (generalized degree); 1.5.2. Functions g(L) for regular graphs; 1.5.3. Locality and non-locality of g(L) in the limit of large networks; 1.6. Appendix: Laplacian eigenvalues for interacting cycles; 2. The Fractional Laplacian of Networks; 2.1. Introduction; 2.2. General properties of the fractional Laplacian; 2.3. Fractional Laplacian for regular graphs; 2.4. Fractional Laplacian and type (i) and type (ii) functions
505 8 _a2.5. Appendix: Some basic properties of measures3. Markovian Random Walks on Undirected Networks; 3.1. Introduction; 3.2. Ergodic Markov chains and random walks on graphs; 3.2.1. Characterization of networks: the Laplacian matrix; 3.2.2. Characterization of random walks on networks: Ergodic Markov chains; 3.2.3. The fundamental theorem of Markov chains; 3.2.4. The ergodic hypothesis and theorem; 3.2.5. Strong law of large numbers; 3.2.6. Analysis of the spectral properties of the transition matrix; 3.3. Appendix: further spectral properties of the transition matrix
505 8 _a3.4. Appendix: Markov chains and bipartite networks3.4.1. Unique overall probability in bipartite networks; 3.4.2. Eigenvalue structure of the transition matrix for normal walks in bipartite graphs; 4. Random Walks with Long-range Steps on Networks; 4.1. Introduction; 4.2. Random walk strategies and; 4.2.1. Fractional Laplacian; 4.2.2. Logarithmic functions of the Laplacian; 4.2.3. Exponential functions of the Laplacian; 4.3. Lévy flights on networks; 4.4. Transition matrix for types (i) and (ii) Laplacian functions; 4.5. Global characterization of random walk strategies
520 _aThis book analyzes stochastic processes on networks and regular structures such as lattices by employing the Markovian random walk approach. Part 1 is devoted to the study of local and non-local random walks. It shows how non-local random walk strategies can be defined by functions of the Laplacian matrix that maintain the stochasticity of the transition probabilities. A major result is that only two types of functions are admissible: type (i) functions generate asymptotically local walks with the emergence of Brownian motion, whereas type (ii) functions generate asymptotically scale-free non-local "fractional" walks with the emergence of LEvy flights. In Part 2, fractional dynamics and LEvy flight behavior are analyzed thoroughly, and a generalization of POlya's classical recurrence theorem is developed for fractional walks. The authors analyze primary fractional walk characteristics such as the mean occupation time, the mean first passage time, the fractal scaling of the set of distinct nodes visited, etc. The results show the improved search capacities of fractional dynamics on networks.
650 0 _aMarkov processes.
_98309
650 0 _aRandom walks (Mathematics)
_98310
650 7 _aMATHEMATICS
_xApplied.
_2bisacsh
_95811
650 7 _aMATHEMATICS
_xProbability & Statistics
_xGeneral.
_2bisacsh
_95812
650 7 _aMarkov processes.
_2fast
_0(OCoLC)fst01010347
_98309
650 7 _aRandom walks (Mathematics)
_2fast
_0(OCoLC)fst01089818
_98310
655 4 _aElectronic books.
_93294
700 1 _aPérez Riascos, Alejandro,
_eauthor.
_98311
700 1 _aCollet, Bernard,
_eauthor.
_98312
700 1 _aNowakowski, Andrzej,
_eauthor.
_98313
700 1 _aNicolleau, F. C. G. A.
_q(Frank C. G. A.),
_eauthor.
_98314
830 0 _aMechanical engineering and solid mechanics series.
_97010
856 4 0 _uhttps://doi.org/10.1002/9781119608165
_zWiley Online Library
942 _cEBK
994 _a92
_bDG1
999 _c69062
_d69062