000 03813cam a22006258i 4500
001 on1110125616
003 OCoLC
005 20220711203541.0
006 m o d
007 cr |||||||||||
008 190711s2020 nju ob 001 0 eng
010 _a 2019029934
040 _aDLC
_beng
_erda
_cDLC
_dOCLCO
_dOCLCF
_dDG1
_dCDN
019 _a1131862601
020 _a9781119562313
_q(epub)
020 _a1119562317
_q(epub)
020 _a9781119562276
_q(adobe pdf)
020 _a1119562279
_q(adobe pdf)
020 _a9781119562306
_q(electronic bk.)
020 _a1119562309
_q(electronic bk.)
020 _z9781119562252
_q(hardback)
020 _z1119562252
_q(hardback)
029 1 _aAU@
_b000065844975
029 1 _aCHVBK
_b582548861
029 1 _aCHNEW
_b001076901
035 _a(OCoLC)1110125616
_z(OCoLC)1131862601
042 _apcc
050 4 _aTK5103.2
_b.M3158 2020
050 0 0 _aTK5103.2
082 0 0 _a621.3840285/631
_223
049 _aMAIN
245 0 0 _aMachine learning for future wireless communications /
_cedited by Fa-Long Luo.
263 _a1911
264 1 _aHoboken, NJ :
_bWiley-IEEE,
_c2020.
300 _a1 online resource (xxvi, 464 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
504 _aIncludes bibliographical references and index.
520 _a"Due to its powerful nonlinear mapping and distribution processing capability, deep neural networks based machine learning technology is being considered as a very promising tool to attack the big challenge in wireless communications and networks imposed by the explosively increasing demands in terms of capacity, coverage, latency, efficiency (power, frequency spectrum and other resources), flexibility, compatibility, quality of experience and silicon convergence. Mainly categorized into the supervised learning, the unsupervised learning and the reinforcement learning, various machine learning algorithms can be used to provide a better channel modelling and estimation in millimeter and terahertz bands, to select a more adaptive modulation (waveform, coding rate, bandwidth, and filtering structure) in massive multiple-input and multiple-output (MIMO) technology, to design a more efficient front-end and radio-frequency processing (pre-distortion for power amplifier compensation, beamforming configuration and crest-factor reduction), to deliver a better compromise in self-interference cancellation for full-duplex transmissions and device-to-device communications, and to offer a more practical solution for intelligent network optimization, mobile edge computing, networking slicing and radio resource management related to wireless big data, mission critical communications, massive machine-type communications and tactile internet"--
_cProvided by publisher.
588 _aDescription based on print version record and CIP data provided by publisher; resource not viewed.
590 _aJohn Wiley and Sons
_bWiley Frontlist Obook All English 2020
650 0 _aWireless communication systems.
_93474
650 0 _aMachine learning.
_91831
650 0 _aNeural networks (Computer science)
_93414
650 7 _aMachine learning.
_2fast
_0(OCoLC)fst01004795
_91831
650 7 _aNeural networks (Computer science)
_2fast
_0(OCoLC)fst01036260
_93414
650 7 _aWireless communication systems.
_2fast
_0(OCoLC)fst01176209
_93474
655 4 _aElectronic books.
_93294
700 1 _aLuo, Fa-Long,
_eeditor.
_98710
776 0 8 _iPrint version:
_aLuo, Fa-Long.
_tMachine learning for future wireless communications
_dHoboken, NJ : Wiley-IEEE, 2019.
_z9781119562252
_w(DLC) 2019029933
856 4 0 _uhttps://doi.org/10.1002/9781119562306
_zWiley Online Library
942 _cEBK
994 _a92
_bDG1
999 _c69179
_d69179