000 05941cam a2200565Ia 4500
001 on1136967948
003 OCoLC
005 20220711203554.0
006 m o d
007 cr un|---aucuu
008 200118s2020 enk ob 001 0 eng d
040 _aEBLCP
_beng
_epn
_cEBLCP
_dDG1
_dRECBK
_dOCLCF
_dOCLCQ
_dUKAHL
020 _a9781119694939
_q(electronic bk. ;
_qoBook)
020 _a1119694930
_q(electronic bk. ;
_qoBook)
020 _a9781119694953
020 _a1119694957
020 _z9781786305015
_q(print)
029 1 _aAU@
_b000066723999
029 1 _aCHNEW
_b001077467
029 1 _aCHVBK
_b582680166
035 _a(OCoLC)1136967948
050 4 _aQC174.12
082 0 4 _a530.12
_223
049 _aMAIN
100 1 _aSakho, Ibrahima.
_98915
245 1 0 _aIntroduction to quantum mechanics.
_n2,
_pWave-corpuscle, quantization and Schrödinger's equation /
_cIbrahima Sakho.
246 3 0 _aWave-corpuscle, quantization and Schrödinger's equation
260 _aLondon :
_bISTE, Ltd. ;
_aHoboken :
_bWiley,
_c2020.
300 _a1 online resource (309 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
588 0 _aPrint version record.
505 0 _aCover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- 1. Schrödinger's Equation and its Applications -- 1.1. Physical state and physical quantity -- 1.1.1. Dynamic state of a particle -- 1.1.2. Physical quantities associated with a particle -- 1.2. Square-summable wave function -- 1.2.1. Definition, superposition principle -- 1.2.2. Properties -- 1.3. Operator -- 1.3.1. Definition of an operator, examples -- 1.3.2. Hermitian operator -- 1.3.3. Linear observable operator -- 1.3.4. Correspondence principle, Hamiltonian
505 8 _a1.4. Evolution of physical systems -- 1.4.1. Time-dependent Schrödinger equation -- 1.4.2. Stationary Schrödinger equation -- 1.4.3. Evolution operator -- 1.5. Properties of Schrödinger's equation -- 1.5.1. Determinism in the evolution of physical systems -- 1.5.2. Superposition principle -- 1.5.3. Probability current density -- 1.6. Applications of Schrödinger's equation -- 1.6.1. Infinitely deep potential well -- 1.6.2. Potential step -- 1.6.3. Potential barrier, tunnel effect -- 1.6.4. Quantum dot -- 1.6.5. Ground state energy of hydrogen-like systems -- 1.7. Exercises
505 8 _a1.7.1. Exercise 1 -- Probability current density -- 1.7.2. Exercise 2 -- Heisenberg's spatial uncertainty relations -- 1.7.3. Exercise 3 -- Finite-depth potential step -- 1.7.4. Exercise 4 -- Multistep potential -- 1.7.5. Exercise 5 -- Particle confined in a rectangular potential -- 1.7.6. Exercise 6 -- Square potential well: unbound states -- 1.7.7. Exercise 7 -- Square potential well: bound states -- 1.7.8. Exercise 8 -- Infinitely deep rectangular potential well -- 1.7.9. Exercise 9 -- Metal assimilated to a potential well, cold emission
505 8 _a1.7.10. Exercise 10 -- Ground state energy of the harmonic oscillator -- 1.7.11. Exercise 11 -- Quantized energy of the harmonic oscillator -- 1.7.12. Exercise 12 -- HCl molecule assimilated to a linear oscillator -- 1.7.13. Exercise 13 -- Quantized energy of hydrogen-like systems -- 1.7.14. Exercise 14 -- Line integral of the probability current density vector, Bohr's magneton -- 1.7.15. Exercise 15 -- Schrödinger's equation in the presence of a magnetic field, Zeeman-Lorentz triplet -- 1.7.16. Exercise 16 -- Deduction of the stationary Schrödinger equation from the De Broglie relation
505 8 _a1.8. Solutions -- 1.8.1. Solution 1 -- Probability current density -- 1.8.2. Solution 2 -- Heisenberg's spatial uncertainty relations -- 1.8.3. Solution 3 -- Finite-depth potential step -- 1.8.4. Solution 4 -- Multistep potential -- 1.8.5. Solution 5 -- Particle confined in a rectangular potential -- 1.8.6. Solution 6 -- Square potential well: unbound states -- 1.8.7. Solution 7 -- Square potential well: bound states -- 1.8.8. Solution 8 -- Infinitely deep rectangular potential well -- 1.8.9. Solution 9 -- Metal assimilated to a potential well, cold emission
505 8 _a1.8.10. Solution 10 -- Ground state energy of the harmonic oscillator
504 _aIncludes bibliographical references and index.
520 _aQuantum mechanics is the foundation of modern technology, due to its innumerable applications in physics, chemistry and even biology. This second volume studies SchrOdinger's equation and its applications in the study of wells, steps and potential barriers. It examines the properties of orthonormal bases in the space of square-summable wave functions and Dirac notations in the space of states. This book has a special focus on the notions of the linear operators, the Hermitian operators, observables, Hermitian conjugation, commutators and the representation of kets, bras and operators in the space of states. The eigenvalue equation, the characteristic equation and the evolution equation of the mean value of an observable are introduced. The book goes on to investigate the study of conservative systems through the time evolution operator and Ehrenfest's theorem. Finally, this second volume is completed by the introduction of the notions of quantum wire, quantum wells of semiconductor materials and quantum dots in the appendices.
650 0 _aQuantum theory.
_93607
650 7 _aTECHNOLOGY & ENGINEERING
_xElectronics
_xSolid State.
_2bisacsh
_98916
650 7 _aQuantum theory.
_2fast
_0(OCoLC)fst01085128
_93607
655 4 _aElectronic books.
_93294
776 0 8 _iPrint version:
_aSakho, Ibrahima.
_tIntroduction to Quantum Mechanics 2 : Wave-Corpuscle, Quantization and Schr¿dinger¿s Equation.
_dNewark : John Wiley & Sons, Incorporated, ©2020
_z9781786305015
856 4 0 _uhttps://doi.org/10.1002/9781119694939
_zWiley Online Library
942 _cEBK
994 _aC0
_bDG1
999 _c69233
_d69233